Suppr超能文献

登革病毒的结构:对黄病毒的组装、成熟及融合的影响

Structure of dengue virus: implications for flavivirus organization, maturation, and fusion.

作者信息

Kuhn Richard J, Zhang Wei, Rossmann Michael G, Pletnev Sergei V, Corver Jeroen, Lenches Edith, Jones Christopher T, Mukhopadhyay Suchetana, Chipman Paul R, Strauss Ellen G, Baker Timothy S, Strauss James H

机构信息

Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Cell. 2002 Mar 8;108(5):717-25. doi: 10.1016/s0092-8674(02)00660-8.

Abstract

The first structure of a flavivirus has been determined by using a combination of cryoelectron microscopy and fitting of the known structure of glycoprotein E into the electron density map. The virus core, within a lipid bilayer, has a less-ordered structure than the external, icosahedral scaffold of 90 glycoprotein E dimers. The three E monomers per icosahedral asymmetric unit do not have quasiequivalent symmetric environments. Difference maps indicate the location of the small membrane protein M relative to the overlaying scaffold of E dimers. The structure suggests that flaviviruses, and by analogy also alphaviruses, employ a fusion mechanism in which the distal beta barrels of domain II of the glycoprotein E are inserted into the cellular membrane.

摘要

黄病毒的首个结构是通过结合冷冻电子显微镜技术以及将糖蛋白E的已知结构拟合到电子密度图中确定的。位于脂质双分子层内的病毒核心,其结构的有序程度低于外部由90个糖蛋白E二聚体组成的二十面体支架。每个二十面体不对称单元中的三个E单体没有准等效的对称环境。差异图显示了小膜蛋白M相对于E二聚体覆盖支架的位置。该结构表明,黄病毒以及类似的甲病毒采用了一种融合机制,即糖蛋白E结构域II的远端β桶插入细胞膜。

相似文献

1
Structure of dengue virus: implications for flavivirus organization, maturation, and fusion.
Cell. 2002 Mar 8;108(5):717-25. doi: 10.1016/s0092-8674(02)00660-8.
2
Pushing the Envelope: Dengue Viral Membrane Coaxed into Shape by Molecular Simulations.
Structure. 2016 Aug 2;24(8):1410-1420. doi: 10.1016/j.str.2016.05.014. Epub 2016 Jul 7.
3
Structure of the immature dengue virus at low pH primes proteolytic maturation.
Science. 2008 Mar 28;319(5871):1834-7. doi: 10.1126/science.1153264.
4
Conformational changes of the flavivirus E glycoprotein.
Structure. 2004 Sep;12(9):1607-18. doi: 10.1016/j.str.2004.06.019.
5
Structures of immature flavivirus particles.
EMBO J. 2003 Jun 2;22(11):2604-13. doi: 10.1093/emboj/cdg270.
6
Picture story. Does Dengue virus fuse using beta-barrels?
Nat Struct Biol. 2002 Apr;9(4):244. doi: 10.1038/nsb0402-244.
7
Structure of acidic pH dengue virus showing the fusogenic glycoprotein trimers.
J Virol. 2015 Jan;89(1):743-50. doi: 10.1128/JVI.02411-14. Epub 2014 Oct 29.
8
Mechanism for maturation-related reorganization of flavivirus glycoproteins.
J Struct Biol. 2014 Jan;185(1):27-31. doi: 10.1016/j.jsb.2013.11.001. Epub 2013 Nov 16.
9
Membrane curvature in flaviviruses.
J Struct Biol. 2013 Jul;183(1):86-94. doi: 10.1016/j.jsb.2013.04.005. Epub 2013 Apr 18.
10
Structure of the dengue virus envelope protein after membrane fusion.
Nature. 2004 Jan 22;427(6972):313-9. doi: 10.1038/nature02165.

引用本文的文献

1
Irreversible furin cleavage site exposure renders immature tick-borne flaviviruses fully infectious.
Nat Commun. 2025 Aug 12;16(1):7491. doi: 10.1038/s41467-025-62750-6.
3
Dengue and Flavivirus Co-Infections: Challenges in Diagnosis, Treatment, and Disease Management.
Int J Mol Sci. 2025 Jul 10;26(14):6609. doi: 10.3390/ijms26146609.
4
Pathogenicity and virulence of Powassan virus.
Virulence. 2025 Dec;16(1):2523887. doi: 10.1080/21505594.2025.2523887. Epub 2025 Jun 26.
5
Structural basis for antibody cross-neutralization of Dengue and Zika viruses.
bioRxiv. 2025 Jun 21:2025.06.05.658091. doi: 10.1101/2025.06.05.658091.
7
A two-component cocktail of engineered DIII nanoparticles elicits broadly neutralizing antibody responses against dengue virus in mice.
iScience. 2025 Apr 29;28(6):112534. doi: 10.1016/j.isci.2025.112534. eCollection 2025 Jun 20.
8
Spatiotemporal dispersion of DENV-1 genotype V in Western Colombia.
Virus Evol. 2025 Apr 16;11(1):veaf018. doi: 10.1093/ve/veaf018. eCollection 2025.
9
Evolution and adaptation of dengue virus in response to high-temperature passaging in mosquito cells.
Virus Evol. 2025 Apr 24;11(1):veaf016. doi: 10.1093/ve/veaf016. eCollection 2025.
10
HLA alleles and dengue susceptibility across populations in the era of climate change: a comprehensive review.
Front Immunol. 2025 Apr 15;16:1473475. doi: 10.3389/fimmu.2025.1473475. eCollection 2025.

本文引用的文献

1
Physical principles in the construction of regular viruses.
Cold Spring Harb Symp Quant Biol. 1962;27:1-24. doi: 10.1101/sqb.1962.027.001.005.
2
Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus.
Mol Cell. 2001 Mar;7(3):593-602. doi: 10.1016/s1097-2765(01)00206-4.
5
6
Virus evolution: how does an enveloped virus make a regular structure?
Cell. 2001 Apr 6;105(1):5-8. doi: 10.1016/s0092-8674(01)00291-4.
7
Mutational evidence for an internal fusion peptide in flavivirus envelope protein E.
J Virol. 2001 May;75(9):4268-75. doi: 10.1128/JVI.75.9.4268-4275.2001.
8
Structures and mechanisms in flavivirus fusion.
Adv Virus Res. 2000;55:231-69. doi: 10.1016/s0065-3527(00)55005-2.
9
Membrane proteins organize a symmetrical virus.
EMBO J. 2000 Oct 2;19(19):5081-91. doi: 10.1093/emboj/19.19.5081.
10
Fitting atomic models into electron-microscopy maps.
Acta Crystallogr D Biol Crystallogr. 2000 Oct;56(Pt 10):1341-9. doi: 10.1107/s0907444900009562.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验