Suppr超能文献

编码海藻糖-6-磷酸磷酸酶的白色念珠菌TPS2基因的破坏会降低感染力,而不影响菌丝形成。

Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation.

作者信息

Van Dijck Patrick, De Rop Larissa, Szlufcik Karolina, Van Ael Elke, Thevelein Johan M

机构信息

Laboratory of Molecular Cell Biology and Flemish Institute for Biotechnology, Instituut voor Plantkunde en Microbiologie, Katholieke Universiteit Leuven, B-3001 Heverlee, Flanders, Belgium.

出版信息

Infect Immun. 2002 Apr;70(4):1772-82. doi: 10.1128/IAI.70.4.1772-1782.2002.

Abstract

Deletion of trehalose-6-phosphate phosphatase, encoded by TPS2, in Saccharomyces cerevisiae results in accumulation of trehalose-6-phosphate (Tre6P) instead of trehalose under stress conditions. Since trehalose is an important stress protectant and Tre6P accumulation is toxic, we have investigated whether Tre6P phosphatase could be a useful target for antifungals in Candida albicans. We have cloned the C. albicans TPS2 (CaTPS2) gene and constructed heterozygous and homozygous deletion strains. As in S. cerevisiae, complete inactivation of Tre6P phosphatase in C. albicans results in 50-fold hyperaccumulation of Tre6P, thermosensitivity, and rapid death of the cells after a few hours at 44 degrees C. As opposed to inactivation of Tre6P synthase by deletion of CaTPS1, deletion of CaTPS2 does not affect hypha formation on a solid glucose-containing medium. In spite of this, virulence of the homozygous deletion mutant is strongly reduced in a mouse model of systemic infection. The pathogenicity of the heterozygous deletion mutant is similar to that of the wild-type strain. CaTPS2 is a new example of a gene not required for growth under standard conditions but required for pathogenicity in a host. Our results suggest that Tre6P phosphatase may serve as a potential target for antifungal drugs. Neither Tre6P phosphatase nor its substrate is present in mammals, and assay of the enzymes is simple and easily automated for high-throughput screening.

摘要

酿酒酵母中由TPS2编码的海藻糖-6-磷酸磷酸酶缺失,会导致在应激条件下积累海藻糖-6-磷酸(Tre6P)而非海藻糖。由于海藻糖是一种重要的应激保护剂,而Tre6P的积累具有毒性,我们研究了Tre6P磷酸酶是否可能成为白色念珠菌抗真菌药物的有效靶点。我们克隆了白色念珠菌的TPS2(CaTPS2)基因,并构建了杂合和纯合缺失菌株。与酿酒酵母一样,白色念珠菌中Tre6P磷酸酶的完全失活会导致Tre6P超积累50倍、热敏感性增加,并且在44摄氏度下培养数小时后细胞会迅速死亡。与通过缺失CaTPS1使Tre6P合酶失活不同,缺失CaTPS2并不影响在含固体葡萄糖培养基上的菌丝形成。尽管如此,在系统性感染的小鼠模型中,纯合缺失突变体的毒力大幅降低。杂合缺失突变体的致病性与野生型菌株相似。CaTPS2是一个在标准条件下生长不需要但在宿主体内致病性必需的基因的新例子。我们的结果表明,Tre6P磷酸酶可能是抗真菌药物的潜在靶点。Tre6P磷酸酶及其底物在哺乳动物中均不存在,并且该酶的检测简单且易于自动化以进行高通量筛选。

相似文献

5
Role of trehalose-6P phosphatase (TPS2) in stress tolerance and resistance to macrophage killing in Candida albicans.
Int J Med Microbiol. 2009 Aug;299(6):453-64. doi: 10.1016/j.ijmm.2008.12.001. Epub 2009 Feb 20.
8
Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis.
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7148-53. doi: 10.1073/pnas.1601774113. Epub 2016 Jun 15.

引用本文的文献

1
The synthesis, degradation and biological function of trehalose- 6-phosphate.
Stress Biol. 2025 May 30;5(1):38. doi: 10.1007/s44154-025-00235-8.
3
Developing the trehalose biosynthesis pathway as an antifungal drug target.
NPJ Antimicrob Resist. 2025 Apr 14;3(1):30. doi: 10.1038/s44259-025-00095-2.
4
The stress-protectant molecule trehalose mediates fluconazole tolerance in .
Antimicrob Agents Chemother. 2025 Mar 5;69(3):e0134924. doi: 10.1128/aac.01349-24. Epub 2025 Jan 24.
5
Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen : A target for antifungals.
Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2314087121. doi: 10.1073/pnas.2314087121. Epub 2024 Jul 31.
6
Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans.
BMC Microbiol. 2024 Feb 27;24(1):66. doi: 10.1186/s12866-024-03213-8.
8
Trehalose biosynthetic pathway regulates filamentation response in Saccharomyces cerevisiae.
Mol Biol Rep. 2022 Oct;49(10):9387-9396. doi: 10.1007/s11033-022-07792-5. Epub 2022 Jul 31.
9
Molecular investigations on clinical isolates for pharmacological targeting.
RSC Adv. 2022 Jun 14;12(27):17570-17584. doi: 10.1039/d2ra02092k. eCollection 2022 Jun 7.
10
Lack of Functional Trehalase Activity in Increases Susceptibility to Itraconazole.
J Fungi (Basel). 2022 Apr 5;8(4):371. doi: 10.3390/jof8040371.

本文引用的文献

2
Epidemiology of candidemia.
Rev Iberoam Micol. 2000 Sep;17(3):73-81.
3
An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana.
Trends Plant Sci. 2001 Nov;6(11):510-3. doi: 10.1016/s1360-1385(01)02125-2.
5
The exciting future of antifungal therapy.
Eur J Clin Microbiol Infect Dis. 2000 Dec;19(12):897-914. doi: 10.1007/s100960000395.
6
Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae.
Curr Opin Microbiol. 2000 Dec;3(6):567-72. doi: 10.1016/s1369-5274(00)00142-9.
9
Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans.
Mol Microbiol. 2000 Jan;35(2):386-96. doi: 10.1046/j.1365-2958.2000.01705.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验