Miao Yi, Tenor Jennifer L, Toffaletti Dena L, Washington Erica J, Liu Jiuyu, Shadrick William R, Schumacher Maria A, Lee Richard E, Perfect John R, Brennan Richard G
Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710;
Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710;
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7148-53. doi: 10.1073/pnas.1601774113. Epub 2016 Jun 15.
Trehalose is a disaccharide essential for the survival and virulence of pathogenic fungi. The biosynthesis of trehalose requires trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. Here, we report the structures of the N-terminal domain of Tps2 (Tps2NTD) from Candida albicans, a transition-state complex of the Tps2 C-terminal trehalose-6-phosphate phosphatase domain (Tps2PD) bound to BeF3 and trehalose, and catalytically dead Tps2PD(D24N) from Cryptococcus neoformans bound to trehalose-6-phosphate (T6P). The Tps2NTD closely resembles the structure of Tps1 but lacks any catalytic activity. The Tps2PD-BeF3-trehalose and Tps2PD(D24N)-T6P complex structures reveal a "closed" conformation that is effected by extensive interactions between each trehalose hydroxyl group and residues of the cap and core domains of the protein, thereby providing exquisite substrate specificity. Disruption of any of the direct substrate-protein residue interactions leads to significant or complete loss of phosphatase activity. Notably, the Tps2PD-BeF3-trehalose complex structure captures an aspartyl-BeF3 covalent adduct, which closely mimics the proposed aspartyl-phosphate intermediate of the phosphatase catalytic cycle. Structures of substrate-free Tps2PD reveal an "open" conformation whereby the cap and core domains separate and visualize the striking conformational changes effected by substrate binding and product release and the role of two hinge regions centered at approximately residues 102-103 and 184-188. Significantly, tps2Δ, tps2NTDΔ, and tps2D705N strains are unable to grow at elevated temperatures. Combined, these studies provide a deeper understanding of the substrate recognition and catalytic mechanism of Tps2 and provide a structural basis for the future design of novel antifungal compounds against a target found in three major fungal pathogens.
海藻糖是致病真菌生存和致病力所必需的二糖。海藻糖的生物合成需要海藻糖-6-磷酸合酶(Tps1)和海藻糖-6-磷酸磷酸酶(Tps2)。在此,我们报道了白色念珠菌Tps2的N端结构域(Tps2NTD)、与BeF3和海藻糖结合的Tps2 C端海藻糖-6-磷酸磷酸酶结构域(Tps2PD)的过渡态复合物,以及新生隐球菌与6-磷酸海藻糖(T6P)结合的催化失活Tps2PD(D24N)的结构。Tps2NTD与Tps1的结构非常相似,但缺乏任何催化活性。Tps2PD-BeF3-海藻糖和Tps2PD(D24N)-T6P复合物结构揭示了一种“封闭”构象,这种构象是由每个海藻糖羟基与蛋白质帽状结构域和核心结构域的残基之间广泛的相互作用所导致的,从而提供了精确的底物特异性。任何直接的底物-蛋白质残基相互作用的破坏都会导致磷酸酶活性显著或完全丧失。值得注意的是,Tps2PD-BeF3-海藻糖复合物结构捕获了一个天冬氨酰-BeF3共价加合物,它紧密模拟了磷酸酶催化循环中假定的天冬氨酰-磷酸中间体。无底物Tps2PD的结构揭示了一种“开放”构象,其中帽状结构域和核心结构域分离,并展示了由底物结合和产物释放所引起的显著构象变化,以及以大约第102 - 103位和184 - 188位残基为中心的两个铰链区的作用。重要的是,tps2Δ、tps2NTDΔ和tps2D705N菌株在高温下无法生长。综合起来,这些研究为深入理解Tps2的底物识别和催化机制提供了帮助,并为未来设计针对三种主要真菌病原体中发现的一个靶点的新型抗真菌化合物提供了结构基础。