Wagner Peter D, Araoz Mauricio, Boushel Robert, Calbet José A L, Jessen Birgitte, Rådegran Göran, Spielvogel Hilde, Søndegaard Hans, Wagner Harrieth, Saltin Bengt
Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA.
J Appl Physiol (1985). 2002 Apr;92(4):1393-400. doi: 10.1152/japplphysiol.00093.2001.
Pulmonary gas exchange and acid-base state were compared in nine Danish lowlanders (L) acclimatized to 5,260 m for 9 wk and seven native Bolivian residents (N) of La Paz (altitude 3,600-4,100 m) brought acutely to this altitude. We evaluated normalcy of arterial pH and assessed pulmonary gas exchange and acid-base balance at rest and during peak exercise when breathing room air and 55% O2. Despite 9 wk at 5,260 m and considerable renal bicarbonate excretion (arterial plasma HCO3- concentration = 15.1 meq/l), resting arterial pH in L was 7.48 +/- 0.007 (significantly greater than 7.40). On the other hand, arterial pH in N was only 7.43 +/- 0.004 (despite arterial O2 saturation of 77%) after ascent from 3,600-4,100 to 5,260 m in 2 h. Maximal power output was similar in the two groups breathing air, whereas on 55% O2 only L showed a significant increase. During exercise in air, arterial PCO2 was 8 Torr lower in L than in N (P < 0.001), yet PO2 was the same such that, at maximal O2 uptake, alveolar-arterial PO2 difference was lower in N (5.3 +/- 1.3 Torr) than in L (10.5 +/- 0.8 Torr), P = 0.004. Calculated O2 diffusing capacity was 40% higher in N than in L and, if referenced to maximal hyperoxic work, capacity was 73% greater in N. Buffering of lactic acid was greater in N, with 20% less increase in base deficit per millimole per liter rise in lactate. These data show in L persistent alkalosis even after 9 wk at 5,260 m. In N, the data show 1) insignificant reduction in exercise capacity when breathing air at 5,260 m compared with breathing 55% O2; 2) very little ventilatory response to acute hypoxemia (judged by arterial pH and arterial PCO2 responses to hyperoxia); 3) during exercise, greater pulmonary diffusing capacity than in L, allowing maintenance of arterial PO2 despite lower ventilation; and 4) better buffering of lactic acid. These results support and extend similar observations concerning adaptation in lung function in these and other high-altitude native groups previously performed at much lower altitudes.
对9名适应了5260米高度9周的丹麦低地人(L组)和7名来自拉巴斯(海拔3600 - 4100米)、被迅速带到该海拔高度的玻利维亚当地居民(N组)的肺气体交换和酸碱状态进行了比较。我们评估了动脉血pH值的正常情况,并在静息状态以及呼吸室内空气和55%氧气时的运动峰值期间评估了肺气体交换和酸碱平衡。尽管在5260米高度停留了9周且肾脏有大量碳酸氢盐排泄(动脉血浆HCO₃⁻浓度 = 15.1 meq/l),但L组静息时的动脉血pH值为7.48±0.007(显著高于7.40)。另一方面,N组在从3600 - 4100米在2小时内上升到5260米后,动脉血pH值仅为7.43±0.004(尽管动脉血氧饱和度为77%)。两组在呼吸空气时的最大输出功率相似,而在呼吸55%氧气时只有L组显示出显著增加。在呼吸空气运动期间,L组的动脉血PCO₂比N组低8 Torr(P < 0.001),但PO₂相同,因此在最大摄氧量时,N组的肺泡 - 动脉血氧分压差(5.3±1.3 Torr)比L组(10.5±0.8 Torr)低,P = 0.004。计算得出N组的氧弥散能力比L组高40%,如果以最大高氧工作为参考,N组的能力比L组大73%。N组对乳酸的缓冲作用更强,每升乳酸升高一毫摩尔时碱缺失增加量少20%。这些数据表明,L组即使在5260米高度停留9周后仍存在持续性碱中毒。在N组,数据显示:1)在5260米呼吸空气时与呼吸55%氧气相比,运动能力下降不显著;2)对急性低氧血症的通气反应非常小(通过动脉血pH值和动脉血PCO₂对高氧的反应判断);3)在运动期间,肺弥散能力比L组更强,尽管通气量较低仍能维持动脉血氧分压;4)对乳酸的缓冲作用更好。这些结果支持并扩展了之前在低得多的海拔高度对这些及其他高原原住民群体肺功能适应性的类似观察结果。