Gonzalez N C, Sokari A, Clancy R L
Department of Physiology, University of Kansas Medical Center, Kansas City 66103.
J Appl Physiol (1985). 1991 Sep;71(3):1041-9. doi: 10.1152/jappl.1991.71.3.1041.
The objectives of these experiments were 1) to describe the effect of maximum treadmill exercise on gas exchange, arterial blood gases, and arterial blood oxygenation in rats acclimated for 3 wk to simulated altitude (SA, barometric pressure 370-380 Torr) and 2) to determine the contribution of acid-base changes to the changes in arterial blood oxygenation of hypoxic exercise. Maximum O2 uptake (VO2max) was measured in four groups of rats: 1) normoxic controls run in normoxia (Nx), 2) normoxic controls run in acute hypoxia [AHx inspiratory PO2 (PIO2) approximately 70 Torr], 3) SA rats run in hypoxia (3WHx, PIO2 approximately 70 Torr), and 4) SA rats run in normoxia (ANx). VO2max (ml STPD.min-1.kg-1) was 70.8 +/- 0.9 in Nx, 46.4 +/- 1.9 in AHx, 52.6 +/- 1.1 in 3WHx, and 70.0 +/- 2.4 in ANx. Exercise resulted in acidosis, hypocapnia, and elevated blood lactate in all groups. Although blood lactate increased less in 3WHx and ANx, pH was the same or lower than in Nx and AHx, reflecting the low buffer capacity of SA. In AHx and 3WHx, arterial PO2 increased with exercise; however, O2 saturation of hemoglobin in arterial blood (SaO2) decreased. In vitro measurements of the Bohr shift suggest that SaO2 decreased as a result of a decrease in hemoglobin O2 affinity. The data indicate that several features of hypoxic exercise in this model are similar to those seen in humans, with the exception of the mechanism of decrease in SaO2, which, in humans, appears to be due to incomplete alveolar-capillary equilibration.
1)描述最大强度跑步机运动对适应了3周模拟海拔(SA,气压370 - 380 Torr)的大鼠气体交换、动脉血气和动脉血氧合的影响;2)确定酸碱变化对低氧运动时动脉血氧合变化的作用。在四组大鼠中测量了最大摄氧量(VO2max):1)在常氧环境中跑步的常氧对照组(Nx);2)在急性低氧环境[AHx,吸入氧分压(PIO2)约70 Torr]中跑步的常氧对照组;3)在低氧环境(3WHx,PIO2约70 Torr)中跑步的SA大鼠;4)在常氧环境中跑步的SA大鼠(ANx)。Nx组的VO2max(ml STPD·min-1·kg-1)为70.8±0.9,AHx组为46.4±1.9,3WHx组为52.6±1.1,ANx组为70.0±2.4。运动导致所有组出现酸中毒、低碳酸血症和血乳酸升高。尽管3WHx组和ANx组血乳酸增加较少,但pH与Nx组和AHx组相同或更低,这反映了SA大鼠的缓冲能力较低。在AHx组和3WHx组中,运动时动脉血氧分压升高;然而,动脉血中血红蛋白的氧饱和度(SaO2)降低。体外测量的波尔效应表明,SaO2降低是由于血红蛋白对氧的亲和力下降。数据表明,该模型中低氧运动的几个特征与人类相似,但SaO2降低的机制除外,在人类中,这似乎是由于肺泡 - 毛细血管平衡不完全所致。