Suppr超能文献

The effect of sevoflurane on glutamate release and uptake in rat cerebrocortical presynaptic terminals.

作者信息

Vinje M L, Moe M C, Valø E T, Berg-Johnsen J

机构信息

Institute for Surgical Research and Department of Neurosurgery, Rikshospitalet University Hospital, University of Oslo, Oslo, Norway.

出版信息

Acta Anaesthesiol Scand. 2002 Jan;46(1):103-8. doi: 10.1046/j.0001-5172.2001.00412.x.

Abstract

BACKGROUND

Volatile anaesthetics exert their effect in the brain mainly by reducing synaptic excitability. Isoflurane abates excitation by reducing the release and increasing the uptake of transmitter glutamate into the presynaptic terminal. The exact molecular mechanisms exerting these effects, however, are not clear. Voltage-gated calcium channels have been proposed as the pharmacological target. The present study examines the effect of sevoflurane on synaptic glutamate release and free cytosolic calcium and the effect on high- and low-affinity uptake of L-glutamate using isolated presynaptic terminals prepared from rat cerebral cortex.

METHODS

Released glutamate was measured fluorometrically in a spectrophotometer as the fluorescence of NADPH and calcium as the fluorescence of fura-2. 4-aminopyridine was used to induce membrane depolarization. Glutamate uptake was measured in a series of different concentrations of L-glutamate corresponding to the high- and the low- affinity uptake systems adding a fixed concentration og radiolabelled glutamate. The labelling was measured by counting disintegrations per min in a beta-scintillation counter.

RESULTS

Sevoflurane reduced the calcium-dependent glutamate release in a dose-dependent manner as sevoflurane 1.5, 2.5 and 4.0% reduced the release by 58, 69 and 94%, respectively (P<0.05). Membrane depolarization induced an increase in free cytosolic calcium by 25%. Sevoflurane did not affect this increase. Neither the high- nor the low-affinity uptake transporter systems are affected by the anaesthetic.

CONCLUSION

These results indicate that different volatile anaesthetics may act differently on the presynaptic terminal. The exact modes of action have to be further investigated.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验