Suppr超能文献

通过分子间硫醇交联确定的大肠杆菌乳糖通透酶跨膜螺旋中的表面暴露位置。

Surface-exposed positions in the transmembrane helices of the lactose permease of Escherichia coli determined by intermolecular thiol cross-linking.

作者信息

Guan Lan, Murphy Franklin D, Kaback H Ronald

机构信息

Howard Hughes Medical Institute, Department of Physiology, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1662, USA.

出版信息

Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3475-80. doi: 10.1073/pnas.052703699.

Abstract

Intermolecular thiol cross-linking was used to determine surface-exposed positions in 250 lactose permease mutants containing single-Cys replacements in each transmembrane helix. Significant cross-linking of monomers to produce homodimers is observed in nine mutants with a 5-A-long cross-linking agent containing bis-methane thiosulfonate reactive groups [position 78 (helix III); positions 185, 186, and 187 (helix VI); positions 263, 275, and 278 (helix VIII); and positions 308 (helix IX) and 398 (helix XII)]. The results are consistent with a current helix-packing model of the permease. Seven of the nine mutants that exhibit intermolecular cross-linking are located at or near the cytoplasmic ends of transmembrane helices; two are near periplasmic ends. The results suggest that only those Cys replacements accessible from the aqueous phase and not from the hydrophobic core of the membrane are susceptible to cross-linking because of the much higher reactivity of the thiolate anion relative to the thiol. Single-Cys mutants at positions 278 (helix VIII) and 398 (helix XII), which are located in opposite sides of the 12-helix bundle, exhibit similar rates of cross-linking with sigmoid kinetics. Furthermore, cross-linking is markedly decreased at 0 degrees C, suggesting that lateral diffusion of the permease within the plane of the membrane is important for intermolecular cross-linking. The findings confirm previous observations indicating that intermolecular cross-linking is a stochastic process resulting from random collisions and support a number of other lines of evidence that lactose permease is a monomer.

摘要

分子间硫醇交联用于确定250个乳糖通透酶突变体中每个跨膜螺旋含单个半胱氨酸取代的表面暴露位置。使用含有双甲烷硫代磺酸盐反应基团的5埃长交联剂,在9个突变体中观察到单体显著交联形成同型二聚体[位置78(螺旋III);位置185、186和187(螺旋VI);位置263、275和278(螺旋VIII);以及位置308(螺旋IX)和398(螺旋XII)]。结果与通透酶当前的螺旋堆积模型一致。表现出分子间交联的9个突变体中有7个位于跨膜螺旋的胞质端或其附近;2个靠近周质端。结果表明,由于硫醇盐阴离子的反应性远高于硫醇,只有那些可从水相而非膜的疏水核心接近的半胱氨酸取代才易于交联。位于12螺旋束相对两侧的位置278(螺旋VIII)和398(螺旋XII)处的单半胱氨酸突变体表现出相似的交联速率,动力学呈S形。此外,在0℃时交联明显减少,这表明通透酶在膜平面内的侧向扩散对分子间交联很重要。这些发现证实了先前的观察结果,即分子间交联是由随机碰撞导致的随机过程,并支持了许多其他证据表明乳糖通透酶是单体。

相似文献

3
Intermolecular thiol cross-linking via loops in the lactose permease of Escherichia coli.
Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10187-92. doi: 10.1073/pnas.1434239100. Epub 2003 Aug 21.
5
Thiol cross-linking of cytoplasmic loops in the lactose permease of Escherichia coli.
Biochemistry. 2000 Mar 21;39(11):3134-40. doi: 10.1021/bi992509g.
7
Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix X.
Biochemistry. 2000 Sep 5;39(35):10656-61. doi: 10.1021/bi0004403.
8
Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix VII.
Biochemistry. 2000 Sep 5;39(35):10641-8. doi: 10.1021/bi000438b.

引用本文的文献

1
It takes two to tango: The dance of the permease.
J Gen Physiol. 2019 Jul 1;151(7):878-886. doi: 10.1085/jgp.201912377. Epub 2019 May 30.
2
Structural basis for functional interactions in dimers of SLC26 transporters.
Nat Commun. 2019 May 2;10(1):2032. doi: 10.1038/s41467-019-10001-w.
4
Amyloid-like Fibrils from an α-Helical Transmembrane Protein.
Biochemistry. 2017 Jun 27;56(25):3225-3233. doi: 10.1021/acs.biochem.7b00157. Epub 2017 Jun 12.
5
Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics.
Mol Syst Biol. 2015 Mar;11(3):788. doi: 10.15252/msb.20145866.
7
Role of the irreplaceable residues in the LacY alternating access mechanism.
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12438-42. doi: 10.1073/pnas.1210684109. Epub 2012 Jul 16.
8
Interactions among the A and T units of an ECF-type biotin transporter analyzed by site-specific crosslinking.
PLoS One. 2011;6(12):e29087. doi: 10.1371/journal.pone.0029087. Epub 2011 Dec 27.
9
An early event in the transport mechanism of LacY protein: interaction between helices V and I.
J Biol Chem. 2011 Sep 2;286(35):30415-30422. doi: 10.1074/jbc.M111.268433. Epub 2011 Jul 5.
10
Structural determination of wild-type lactose permease.
Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15294-8. doi: 10.1073/pnas.0707688104. Epub 2007 Sep 19.

本文引用的文献

2
Helix packing in the lactose permease of Escherichia coli: localization of helix VI.
J Mol Biol. 2001 Sep 7;312(1):69-77. doi: 10.1006/jmbi.2001.4933.
4
The kamikaze approach to membrane transport.
Nat Rev Mol Cell Biol. 2001 Aug;2(8):610-20. doi: 10.1038/35085077.
6
Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix X.
Biochemistry. 2000 Sep 5;39(35):10656-61. doi: 10.1021/bi0004403.
8
Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix VII.
Biochemistry. 2000 Sep 5;39(35):10641-8. doi: 10.1021/bi000438b.
9
Structural changes linked to proton translocation by subunit c of the ATP synthase.
Nature. 1999 Nov 18;402(6759):263-8. doi: 10.1038/46224.
10
Estimating loop-helix interfaces in a polytopic membrane protein by deletion analysis.
Biochemistry. 1999 Jun 29;38(26):8590-7. doi: 10.1021/bi990650j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验