Suppr超能文献

The mechanism of salivary amylase hydrolysis: role of residues at subsite S2'.

作者信息

Mishra Prasunkumar J, Ragunath Chandran, Ramasubbu Narayanan

机构信息

Dental Research Center, University of Medicine and Dentistry, 185 South Orange Avenue, Newark, New Jersey 07103, USA.

出版信息

Biochem Biophys Res Commun. 2002 Mar 29;292(2):468-73. doi: 10.1006/bbrc.2002.6682.

Abstract

Hydrolysis of starch or oligosaccharides by mammalian amylases, in general, results in maltose as the leaving group. The active site of these amylases harbors three aromatic residues Trp59, Tyr62, and Tyr151, which provide stacking interactions to the bound glucose moieties. We hypothesized that Tyr151, located at the S2' subsite, may influence the size of the leaving group. Therefore, using a baculovirus expression system, we generated a mutant Y151M in which the tyrosine at position 151 of human salivary amylase is replaced by a methionine. The specific activity, K(m), rate of hydrolysis, and the product distribution for Y151M were distinctly different from those of the wild-type enzyme using starch and oligosaccharides as substrates. The mutant enzyme Y151M consistently produced glucose as the minimal leaving group and exhibited a twofold increase in K(m). These results suggest that the stacking interaction at subsite S2' in the wild type plays a role in hydrolysis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验