Suppr超能文献

苯甲酸及其衍生物对α-淀粉酶抑制作用的构效关系研究。

A Structure-Activity Relationship Study of the Inhibition of α-Amylase by Benzoic Acid and Its Derivatives.

机构信息

Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Department of Nutrition and Health, China Agricultural University, Beijing 100094, China.

出版信息

Nutrients. 2022 May 5;14(9):1931. doi: 10.3390/nu14091931.

Abstract

Phenolic acids are widely found in fruits and vegetables. The inhibitory effect of phenolic acids on α-amylase, a key enzyme for starch digestion, has attracted the attention of researchers. To further investigate the effects of different substituents on the benzene ring of phenolic acid on the inhibition of α-amylase activity, in vitro experiments and molecular docking were used. The structure-activity relationships of 17 phenolic acids with benzoic acid as the parent nucleus were analyzed by determining their half inhibitory concentration (IC) toward α-amylase. The results showed that 2,3,4-trihydroxybenzoic acid had the strongest inhibitory effect on α-amylase with an IC value of 17.30 ± 0.73 mM. According to the structure-activity analysis, the hydroxyl group at the 2-position on the benzene ring had a strong positive effect on the inhibitory activity of α-amylase, while methoxylation at the 2-position and hydroxylation at the 5-position had a negative effect. Molecular docking revealed that hydrogen bonding and hydrophobic interactions were involved in the inhibition, with hydrogen bonding being the primary force. These findings provide a more comprehensive understanding of phenolic acids as inhibitors of α-amylase and provide new ideas for the design of dietary formulations for diabetic patients.

摘要

酚酸广泛存在于水果和蔬菜中。酚酸对α-淀粉酶(淀粉消化的关键酶)的抑制作用引起了研究人员的关注。为了进一步研究苯环上不同取代基对酚酸抑制α-淀粉酶活性的影响,采用体外实验和分子对接的方法。通过测定 17 种以苯甲酸为母体核的酚酸对α-淀粉酶的半数抑制浓度(IC),分析了其结构-活性关系。结果表明,2,3,4-三羟基苯甲酸对α-淀粉酶的抑制作用最强,IC 值为 17.30±0.73mM。根据结构-活性分析,苯环上 2 位的羟基对α-淀粉酶的抑制活性有很强的正效应,而 2 位的甲氧基化和 5 位的羟基化则有负效应。分子对接表明,氢键和疏水相互作用参与了抑制作用,其中氢键是主要的作用力。这些发现为酚酸作为α-淀粉酶抑制剂提供了更全面的认识,并为糖尿病患者的膳食配方设计提供了新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35da/9102017/da14a3faa30b/nutrients-14-01931-g001.jpg

相似文献

5
Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions.
Food Chem. 2022 Mar 15;372:131231. doi: 10.1016/j.foodchem.2021.131231. Epub 2021 Sep 27.
7
Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives.
Bioorg Chem. 2018 Oct;80:36-42. doi: 10.1016/j.bioorg.2018.05.021. Epub 2018 May 22.
10
2-Aryl benzimidazoles: Synthesis, In vitro α-amylase inhibitory activity, and molecular docking study.
Eur J Med Chem. 2018 Apr 25;150:248-260. doi: 10.1016/j.ejmech.2018.03.011. Epub 2018 Mar 6.

引用本文的文献

4
Profiling and cheminformatics bioprospection of curcurbitacin I and momordin Ic from on α-amylase and α-glucosidase.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2492706. doi: 10.1080/14756366.2025.2492706. Epub 2025 Apr 29.
5
Evaluation of In Silico and In Vitro Antidiabetic Properties of 4-(Hydroxysubstituted Arylidene)-2-Phenyloxazol-5(4)-one Derivatives.
ACS Omega. 2025 Feb 18;10(8):8009-8022. doi: 10.1021/acsomega.4c09061. eCollection 2025 Mar 4.
7
Polyphenols in foods: a potential strategy for preventing and managing the postprandial hyperglycemic response.
Food Sci Biotechnol. 2024 Jun 13;33(12):2699-2713. doi: 10.1007/s10068-024-01607-y. eCollection 2024 Sep.
8
Phenolic content of Thai Bao mango peel and its antioxidant, anti-cholinesterase, and antidiabetic activities.
Saudi J Biol Sci. 2024 Aug;31(8):104033. doi: 10.1016/j.sjbs.2024.104033. Epub 2024 May 26.
9
Potential anti-obesity effect of saponin metabolites from adzuki beans: A computational approach.
Food Sci Nutr. 2024 Feb 22;12(5):3612-3627. doi: 10.1002/fsn3.4032. eCollection 2024 May.

本文引用的文献

1
Alpha-amylase as molecular target for treatment of diabetes mellitus: A comprehensive review.
Chem Biol Drug Des. 2021 Oct;98(4):539-560. doi: 10.1111/cbdd.13909. Epub 2021 Jul 4.
2
Dietary polyphenols modulate starch digestion and glycaemic level: a review.
Crit Rev Food Sci Nutr. 2020;60(4):541-555. doi: 10.1080/10408398.2018.1544883. Epub 2019 Feb 23.
3
Inhibition of α-amylase by flavonoids: Structure activity relationship (SAR).
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Jan 5;206:437-447. doi: 10.1016/j.saa.2018.08.057. Epub 2018 Aug 28.
4
Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark.
J Chem Inf Model. 2018 Aug 27;58(8):1697-1706. doi: 10.1021/acs.jcim.8b00312. Epub 2018 Jul 25.
5
Inhibitory effects of edible seaweeds, polyphenolics and alginates on the activities of porcine pancreatic α-amylase.
Food Chem. 2018 Apr 15;245:1196-1203. doi: 10.1016/j.foodchem.2017.11.027. Epub 2017 Nov 9.
6
Polyphenolic Compounds and Digestive Enzymes: In Vitro Non-Covalent Interactions.
Molecules. 2017 Apr 22;22(4):669. doi: 10.3390/molecules22040669.
8
Clinical Manifestations of Kidney Disease Among US Adults With Diabetes, 1988-2014.
JAMA. 2016 Aug 9;316(6):602-10. doi: 10.1001/jama.2016.10924.
10
Binding of an Oligomeric Ellagitannin Series to Bovine Serum Albumin (BSA): Analysis by Isothermal Titration Calorimetry (ITC).
J Agric Food Chem. 2015 Dec 16;63(49):10647-54. doi: 10.1021/acs.jafc.5b04843. Epub 2015 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验