Kleeorin Nathan, Rogachevskii Igor, Sokoloff Dmitry
Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2B):036303. doi: 10.1103/PhysRevE.65.036303. Epub 2002 Feb 12.
Magnetic fluctuations with a zero mean field in a random flow with a finite correlation time and a small yet finite magnetic diffusion are studied. Equation for the second-order correlation function of a magnetic field is derived. This equation comprises spatial derivatives of high orders due to a nonlocal nature of magnetic field transport in a random velocity field with a finite correlation time. For a random Gaussian velocity field with a small correlation time the equation for the second-order correlation function of the magnetic field is a third-order partial differential equation. For this velocity field and a small magnetic diffusion with large magnetic Prandtl numbers the growth rate of the second moment of magnetic field is estimated. The finite correlation time of a turbulent velocity field causes an increase of the growth rate of magnetic fluctuations. It is demonstrated that the results obtained for the cases of a small yet finite magnetic diffusion and a zero magnetic diffusion are different.
研究了在具有有限相关时间的随机流以及小但有限的磁扩散情况下具有零平均场的磁涨落。推导了磁场二阶相关函数的方程。由于在具有有限相关时间的随机速度场中磁场输运的非局部性质,该方程包含高阶空间导数。对于具有小相关时间的随机高斯速度场,磁场二阶相关函数的方程是一个三阶偏微分方程。对于该速度场以及具有大磁普朗特数的小磁扩散,估计了磁场二阶矩的增长率。湍流速度场的有限相关时间导致磁涨落增长率增加。结果表明,对于小但有限的磁扩散和零磁扩散情况所得到的结果是不同的。