Vicker Michael G
Department of Biology-Chemistry, University of Bremen, Bremen, D-28359, Germany.
Exp Cell Res. 2002 Apr 15;275(1):54-66. doi: 10.1006/excr.2001.5466.
Actin filament (F-actin) assembly kinetics determines the locomotion and shape of crawling eukaryotic cells, but the nature of these kinetics and their determining reactions are unclear. Live BHK21 fibroblasts, mouse melanoma cells, and Dictyostelium amoebae, locomoting on glass and expressing Green Fluorescent Protein-actin fusion proteins, were examined by confocal microscopy. The cells demonstrated three-dimensional bands of F-actin, which propagated throughout the cytoplasm at rates usually ranging between 2 and 5 microm/min in each cell type and produced lamellipodia or pseudopodia at the cell boundary. F-actin's dynamic behavior and supramolecular spatial patterns resembled in detail self-organized chemical waves in dissipative, physico-chemical systems. On this basis, the present observations provide the first evidence of self-organized, and probably autocatalytic, chemical reaction-diffusion waves of reversible actin filament assembly in vertebrate cells and a comprehensive record of wave and locomotory dynamics in vegetative-stage Dictyostelium cells. The intensity and frequency of F-actin wavefronts determine locomotory cell projections and the rotating oscillatory waves, which structure the cell surface. F-actin assembly waves thus provide a fundamental, deterministic, and nonlinear mechanism of cell locomotion and shape, which complements mechanisms based exclusively on stochastic molecular reaction kinetics.
肌动蛋白丝(F-肌动蛋白)组装动力学决定了爬行真核细胞的运动和形状,但其动力学性质及其决定反应尚不清楚。通过共聚焦显微镜检查了在玻璃上运动并表达绿色荧光蛋白-肌动蛋白融合蛋白的活BHK21成纤维细胞、小鼠黑色素瘤细胞和盘基网柄菌变形虫。这些细胞展示出F-肌动蛋白的三维条带,在每种细胞类型中,这些条带以通常在2至5微米/分钟之间的速率在整个细胞质中传播,并在细胞边界处产生片状伪足或伪足。F-肌动蛋白的动态行为和超分子空间模式与耗散物理化学系统中的自组织化学波详细相似。在此基础上,本观察结果首次证明了脊椎动物细胞中可逆肌动蛋白丝组装的自组织且可能是自催化的化学反应扩散波,并全面记录了营养期盘基网柄菌细胞中的波和运动动力学。F-肌动蛋白波前的强度和频率决定了运动细胞的突起以及构成细胞表面的旋转振荡波。因此,F-肌动蛋白组装波提供了一种基本且确定性的非线性细胞运动和形状机制,它补充了仅基于随机分子反应动力学的机制。