Hasselmo Michael E, Bodelón Clara, Wyble Bradley P
Department of Psychology, Program in Neuroscience and Center for BioDynamics, Boston University, Boston, MA 02215, USA.
Neural Comput. 2002 Apr;14(4):793-817. doi: 10.1162/089976602317318965.
The theta rhythm appears in the rat hippocampal electroencephalogram during exploration and shows phase locking to stimulus acquisition. Lesions that block theta rhythm impair performance in tasks requiring reversal of prior learning, including reversal in a T-maze, where associations between one arm location and food reward need to be extinguished in favor of associations between the opposite arm location and food reward. Here, a hippocampal model shows how theta rhythm could be important for reversal in this task by providing separate functional phases during each 100-300 msec cycle, consistent with physiological data. In the model, effective encoding of new associations occurs in the phase when synaptic input from entorhinal cortex is strong and long-term potentiation (LTP) of excitatory connections arising from hippocampal region CA3 is strong, but synaptic currents arising from region CA3 input are weak (to prevent interference from prior learned associations). Retrieval of old associations occurs in the phase when entorhinal input is weak and synaptic input from region CA3 is strong, but when depotentiation occurs at synapses from CA3 (to allow extinction of prior learned associations that do not match current input). These phasic changes require that LTP at synapses arising from region CA3 should be strongest at the phase when synaptic transmission at these synapses is weakest. Consistent with these requirements, our recent data show that synaptic transmission in stratum radiatum is weakest at the positive peak of local theta, which is when previous data show that induction of LTP is strongest in this layer.
在探索过程中,大鼠海马脑电图会出现θ节律,并且该节律在刺激获取时呈现锁相。阻断θ节律的损伤会损害需要逆转先前学习的任务表现,包括在T迷宫中的逆转,即在T迷宫中,一个臂位置与食物奖励之间的关联需要被消除,转而支持相反臂位置与食物奖励之间的关联。在此,一个海马模型展示了θ节律如何通过在每个100 - 300毫秒周期内提供不同的功能阶段,从而对该任务中的逆转至关重要,这与生理数据一致。在该模型中,新关联的有效编码发生在来自内嗅皮层的突触输入较强且海马区域CA3产生的兴奋性连接的长时程增强(LTP)较强,但来自CA3区域输入的突触电流较弱的阶段(以防止先前学习关联的干扰)。旧关联的检索发生在以下阶段:内嗅输入较弱且来自CA3区域的突触输入较强,但CA3突触处发生去增强时(以允许与当前输入不匹配的先前学习关联的消除)。这些阶段性变化要求来自CA3区域的突触处的LTP在这些突触的突触传递最弱的阶段最强。与这些要求一致,我们最近的数据表明,辐射层中的突触传递在局部θ的正峰值处最弱,而此前的数据表明,该层中LTP的诱导在此时最强。