Suppr超能文献

共聚焦显微镜中的自适应像差校正。

Adaptive aberration correction in a confocal microscope.

作者信息

Booth Martin J, Neil Mark A A, Juskaitis Rimas, Wilson Tony

机构信息

Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5788-92. doi: 10.1073/pnas.082544799. Epub 2002 Apr 16.

Abstract

The main advantage of confocal microscopes over their conventional counterparts is their ability to optically "section" thick specimens; the thin image slices thus obtained can be used to reconstruct three-dimensional images, a capability which is particularly useful in biological applications. However, it is well known that the resolution and optical sectioning ability can be severely degraded by system or specimen-induced aberrations. The use of high aperture lenses further exacerbates the problem. Moreover, aberrations can considerably reduce the number of photons that reach the detector, leading to lower contrast. It is rather unfortunate, therefore, that in practical microscopy, aberration-free confocal imaging is rarely achieved. Adaptive optics systems, which have been used widely to correct aberrations in astronomy, offer a solution here but also present new challenges. The optical system and the source of aberrations in a confocal microscope are considerably different and require a novel approach to wavefront sensing. This method, based upon direct measurement of Zernike aberration modes, also exhibits an axial selectivity similar to that of a confocal microscope. We demonstrate an adaptive confocal fluorescence microscope incorporating this modal sensor together with a deformable membrane mirror for aberration correction. Aberration corrected images of biological specimens show considerable improvement in contrast and apparent restoration of axial resolution.

摘要

共聚焦显微镜相对于传统显微镜的主要优势在于其能够对厚标本进行光学“切片”;由此获得的薄图像切片可用于重建三维图像,这一功能在生物学应用中特别有用。然而,众所周知,系统或标本引起的像差会严重降低分辨率和光学切片能力。使用高孔径透镜会进一步加剧这一问题。此外,像差会大大减少到达探测器的光子数量,导致对比度降低。因此,在实际显微镜检查中很少能实现无像差的共聚焦成像,这相当令人遗憾。自适应光学系统已广泛用于校正天文学中的像差,在此提供了一种解决方案,但也带来了新的挑战。共聚焦显微镜中的光学系统和像差源有很大不同,需要一种新颖的波前传感方法。这种基于直接测量泽尼克像差模式的方法,也表现出与共聚焦显微镜类似的轴向选择性。我们展示了一种自适应共聚焦荧光显微镜,它结合了这种模式传感器和用于像差校正的可变形膜镜。生物标本的像差校正图像在对比度上有显著改善,轴向分辨率明显恢复。

相似文献

1
Adaptive aberration correction in a confocal microscope.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5788-92. doi: 10.1073/pnas.082544799. Epub 2002 Apr 16.
3
Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.
J Microsc. 2004 Jan;213(1):11-9. doi: 10.1111/j.1365-2818.2004.01267.x.
4
Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.
J Microsc. 2015 Sep;259(3):219-27. doi: 10.1111/jmi.12256. Epub 2015 May 4.
6
Adaptive optics in microscopy.
Philos Trans A Math Phys Eng Sci. 2007 Dec 15;365(1861):2829-43. doi: 10.1098/rsta.2007.0013.
7
Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror.
J Microsc. 2002 Apr;206(Pt 1):65-71. doi: 10.1046/j.1365-2818.2002.01004.x.
8
Investigation of the confocal wavefront sensor and its application to biological microscopy.
Opt Express. 2013 Aug 12;21(16):19353-62. doi: 10.1364/OE.21.019353.
10
Wavefront-sensorless adaptive optics with a laser-free spinning disk confocal microscope.
J Microsc. 2022 Nov;288(2):106-116. doi: 10.1111/jmi.12976. Epub 2020 Nov 20.

引用本文的文献

2
Acoustic-feedback wavefront-adapted photoacoustic microscopy.
Optica. 2024 Feb 20;11(2):214-221. doi: 10.1364/optica.511359. Epub 2024 Feb 5.
3
Modal focal adaptive optics for Bessel-focus two-photon fluorescence microscopy.
Opt Express. 2025 Jan 13;33(1):680-693. doi: 10.1364/OE.541033.
4
Confocal Raman Microscopy with Adaptive Optics.
ACS Photonics. 2024 Dec 18;12(1):176-184. doi: 10.1021/acsphotonics.4c01432. eCollection 2025 Jan 15.
5
Frequency-multiplexed aberration measurement for confocal microscopy.
Opt Express. 2024 Jul 29;32(16):28655-28665. doi: 10.1364/OE.525479.
6
Image metric-based multi-observation single-step deep deterministic policy gradient for sensorless adaptive optics.
Biomed Opt Express. 2024 Jul 23;15(8):4795-4814. doi: 10.1364/BOE.528579. eCollection 2024 Aug 1.
7
Non-invasive and noise-robust light focusing using confocal wavefront shaping.
Nat Commun. 2024 Jul 2;15(1):5575. doi: 10.1038/s41467-024-49697-w.
8
Tandem aberration correction optics (TACO) in wide-field structured illumination microscopy.
Biomed Opt Express. 2023 Nov 20;14(12):6381-6396. doi: 10.1364/BOE.503801. eCollection 2023 Dec 1.
9
Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy.
Nat Methods. 2023 Dec;20(12):1957-1970. doi: 10.1038/s41592-023-02058-9. Epub 2023 Nov 13.
10
Universal adaptive optics for microscopy through embedded neural network control.
Light Sci Appl. 2023 Nov 13;12(1):270. doi: 10.1038/s41377-023-01297-x.

本文引用的文献

1
Simple binary optical elements for aberration correction in confocal microscopy.
Opt Lett. 1995 May 15;20(10):1213-5. doi: 10.1364/ol.20.001213.
3
Closed-loop aberration correction by use of a modal Zernike wave-front sensor.
Opt Lett. 2000 Aug 1;25(15):1083-5. doi: 10.1364/ol.25.001083.
4
Computational adaptive optics for live three-dimensional biological imaging.
Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3790-5. doi: 10.1073/pnas.071275698.
5
Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin.
J Microsc. 2000 Oct;200(Pt 1):68-74. doi: 10.1046/j.1365-2818.2000.00735.x.
6
New modal wave-front sensor: a theoretical analysis.
J Opt Soc Am A Opt Image Sci Vis. 2000 Jun;17(6):1098-107. doi: 10.1364/josaa.17.001098.
8
Two-photon laser scanning fluorescence microscopy.
Science. 1990 Apr 6;248(4951):73-6. doi: 10.1126/science.2321027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验