Fraisier V, Clouvel G, Jasaitis A, Dimitrov A, Piolot T, Salamero J
UMR 144 CNRS Institut Curie, Cell and Tissue Imaging Platform (PICT-IBiSA), Nikon Imaging Centre, Paris, France.
Imagine Optic, Orsay, France.
J Microsc. 2015 Sep;259(3):219-27. doi: 10.1111/jmi.12256. Epub 2015 May 4.
Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples.
多焦点显微镜在快速成像和合理分辨率之间实现了良好的平衡。然而,活荧光发射体的低强度是该技术的一个主要限制。光学装置引起的像差,特别是折射率与生物样品本身的不匹配,会扭曲点扩散函数并进一步减少检测到的光子数量。总体而言,这会导致图像质量受损,妨碍对生物样品中分子过程的准确分析以及对样品深处的成像。使用自适应光学可以提高检测到的荧光量。在这里,我们使用了一个紧凑的自适应光学模块(用于切片光学显微镜的自适应光学盒),它是专门为转盘共聚焦显微镜设计的。该模块通过校正共聚焦成像中的大部分像差来克服不期望的异常情况。现有的像差检测方法需要预先照明,这会使样品漂白。为了避免对样品进行多次曝光,我们建立了一个描述主要像差深度依赖性的实验模型。该模型使我们能够在执行z轴堆叠时校正这些像差,并随着深度逐渐增加校正幅度。它不需要对样品进行照明来检测像差,从而将光漂白和光毒性降至最低。通过这个模型,我们提高了信噪比和图像对比度。在这里,我们展示了对各种生物样品的比较研究。