Brédas J L, Calbert J P, da Silva Filho D A, Cornil J
Department of Chemistry, University of Arizona, Tucson, AZ 85721-0041, USA.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5804-9. doi: 10.1073/pnas.092143399. Epub 2002 Apr 23.
Organic semiconductors based on pi-conjugated oligomers and polymers constitute the active elements in new generations of plastic (opto)electronic devices. The performance of these devices depends largely on the efficiency of the charge-transport processes; at the microscopic level, one of the major parameters governing the transport properties is the amplitude of the electronic transfer integrals between adjacent oligomer or polymer chains. Here, quantum-chemical calculations are performed on model systems to address the way transfer integrals between adjacent chains are affected by the nature and relative positions of the interacting units. Compounds under investigation include oligothienylenes, hexabenzocoronene, oligoacenes, and perylene. It is shown that the amplitude of the transfer integrals is extremely sensitive to the molecular packing. Interestingly, in contrast to conventional wisdom, specific arrangements can lead to electron mobilities that are larger than hole mobilities, which is, for instance, the case of perylene.
基于π共轭低聚物和聚合物的有机半导体构成了新一代塑料(光)电子器件中的活性元件。这些器件的性能在很大程度上取决于电荷传输过程的效率;在微观层面,控制传输特性的主要参数之一是相邻低聚物或聚合物链之间电子转移积分的幅度。在此,对模型系统进行了量子化学计算,以研究相邻链之间的转移积分是如何受到相互作用单元的性质和相对位置影响的。所研究的化合物包括低聚噻吩、六苯并蔻、低聚并苯和苝。结果表明,转移积分的幅度对分子堆积极为敏感。有趣的是,与传统观念相反,特定的排列方式可导致电子迁移率大于空穴迁移率,例如苝的情况就是如此。