Arabi Yaseen, Haddad Samir, Goraj Radoslaw, Al-Shimemeri Abdullah, Al-Malik Salim
Consultant ICU Program Director, Critical Care Fellowship, King Fahad National Guard Hospital, Riyadh, Saudi Arabia.
Crit Care. 2002 Apr;6(2):166-74. doi: 10.1186/cc1477. Epub 2002 Mar 13.
The purpose of this study is to assess the performance of Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) II, Mortality Probability Model MPM II0 and MPM II24 systems in a major tertiary care hospital in Riyadh, Saudi Arabia.
The following data were collected prospectively on all consecutive patients admitted to the Intensive Care Unit between 1 March 1999 and 31 December 2000: demographics, APACHE II and SAPS II scores, MPM variables, ICU and hospital outcome. Predicted mortality was calculated using original regression formulas. Standardized mortality ratio (SMR) was computed with 95% confidence intervals (CI). Calibration was assessed by calculating Lemeshow-Hosmer goodness-of-fit C statistics. Discrimination was evaluated by calculating the Area Under the Receiver Operating Characteristic Curves (ROC AUC).
Predicted mortality by all systems was not significantly different from actual mortality [SMR for MPM II0: 1.00 (0.91-1.10), APACHE II: 1.00 (0.8-1.11), SAPS II: 1.09 (0.97-1.21), MPM II24 0.92 (0.82-1.03)]. Calibration was best for MPM II24 (C-statistic: 14.71, P = 0.06). Discrimination was best for MPM II0 (ROC AUC:0.85) followed by MPM II24 (0.84), APACHE II (0.83) then SAPS II (0.79).
In our ICU population: 1) Overall mortality prediction, estimated by standardized mortality ratio, was accurate, especially for MPM II0 and APACHE II. 2) MPM II24 has the best calibration. 3) SAPS II has the lowest calibration and discrimination. The local performance of MPM II24 in addition to its ease-to-use makes it an attractive model for mortality prediction in Saudi Arabia.
本研究的目的是评估急性生理学与慢性健康状况评价系统(APACHE)II、简化急性生理学评分(SAPS)II、死亡概率模型MPM II0和MPM II24系统在沙特阿拉伯利雅得一家大型三级护理医院中的表现。
前瞻性收集了1999年3月1日至2000年12月31日期间入住重症监护病房的所有连续患者的以下数据:人口统计学资料、APACHE II和SAPS II评分、MPM变量、重症监护病房和医院结局。使用原始回归公式计算预测死亡率。计算标准化死亡率(SMR)及其95%置信区间(CI)。通过计算Lemeshow-Hosmer拟合优度C统计量评估校准情况。通过计算受试者工作特征曲线下面积(ROC AUC)评估区分度。
所有系统预测的死亡率与实际死亡率无显著差异[MPM II0的SMR:1.00(0.91 - 1.10),APACHE II:1.00(0.8 - 1.11),SAPS II:1.09(0.97 - 1.21),MPM II24:0.92(0.82 - 1.03)]。MPM II24的校准最佳(C统计量:14.71,P = 0.06)。区分度方面,MPM II0最佳(ROC AUC:0.85),其次是MPM II24(0.84)、APACHE II(0.83),然后是SAPS II(0.79)。
在我们的重症监护病房人群中:1)通过标准化死亡率估计的总体死亡率预测是准确的,尤其是对于MPM II0和APACHE II。2)MPM II24校准最佳。3)SAPS II校准和区分度最低。MPM II24在当地的表现以及其易用性使其成为沙特阿拉伯死亡率预测的一个有吸引力的模型。