Ganichev S D, Ivchenko E L, Bel'kov V V, Tarasenko S A, Sollinger M, Weiss D, Wegscheider W, Prettl W
Fakultät für Physik, Universität Regensburg, D-93040 Regensburg, Germany.
Nature. 2002 May 9;417(6885):153-6. doi: 10.1038/417153a.
There is much recent interest in exploiting the spin of conduction electrons in semiconductor heterostructures together with their charge to realize new device concepts. Electrical currents are usually generated by electric or magnetic fields, or by gradients of, for example, carrier concentration or temperature. The electron spin in a spin-polarized electron gas can, in principle, also drive an electrical current, even at room temperature, if some general symmetry requirements are met. Here we demonstrate such a 'spin-galvanic' effect in semiconductor heterostructures, induced by a non-equilibrium, but uniform population of electron spins. The microscopic origin for this effect is that the two electronic sub-bands for spin-up and spin-down electrons are shifted in momentum space and, although the electron distribution in each sub-band is symmetric, there is an inherent asymmetry in the spin-flip scattering events between the two sub-bands. The resulting current flow has been detected by applying a magnetic field to rotate an optically oriented non-equilibrium spin polarization in the direction of the sample plane. In contrast to previous experiments, where spin-polarized currents were driven by electric fields in semiconductor, we have here the complementary situation where electron spins drive a current without the need of an external electric field.
最近,人们对利用半导体异质结构中传导电子的自旋及其电荷来实现新的器件概念产生了浓厚兴趣。电流通常由电场、磁场或例如载流子浓度或温度的梯度产生。如果满足一些一般的对称性要求,自旋极化电子气中的电子自旋原则上也可以驱动电流,即使在室温下也是如此。在这里,我们展示了半导体异质结构中的这种“自旋电流”效应,它由非平衡但均匀的电子自旋分布引起。这种效应的微观起源是,自旋向上和自旋向下电子的两个电子子带在动量空间中发生了移动,并且尽管每个子带中的电子分布是对称的,但两个子带之间的自旋翻转散射事件存在固有的不对称性。通过施加磁场使光学取向的非平衡自旋极化在样品平面方向上旋转,从而检测到了由此产生的电流流动。与之前在半导体中由电场驱动自旋极化电流的实验不同,我们这里的情况是互补的,即电子自旋无需外部电场就能驱动电流。