Lipton Andrew S, Wright Terri A, Bowman Michael K, Reger Daniel L, Ellis Paul D
Macromolecular Structure & Dynamics Directorate, WR Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
J Am Chem Soc. 2002 May 22;124(20):5850-60. doi: 10.1021/ja0127133.
Solid-state (67)Zn NMR spectra of model compounds for metalloproteins, such as H(2)B(3,5-Me(2)pz)(2)Zn (pz denotes pyrazolyl ring), have been obtained using low temperatures (10 K) to enhance the Boltzmann factor in combination with cross polarization (CP) from (1)H to (67)Zn. Attempts to observe spectra of other model compounds, such as H(2)B(pz)(2)Zn, were hindered by long relaxation times of the protons. To decrease the proton relaxation times, the high-spin six-coordinate complex HB(3,4,5-Me(3)pz)(3)Fe has been investigated as a dopant. NMR and EPR measurements have shown that this Fe(II) dopant effectively reduces the (1)H spin lattice relaxation time, T(1), of the zinc samples in the temperature range 5-10 K with minimal perturbations of the (1)H spin lattice relaxation time in the rotating frame, T(1)(rho). Using this methodology, we have determined the (67)Zn NMR parameters of four- and six-coordinate zinc(II) poly(pyrazolyl)borate complexes that are useful models for systems of biological importance. The (67)Zn NMR parameters are contrasted to the corresponding changes in the (113)Cd NMR parameters for the analogous compounds. Further, these investigations have demonstrated that a temperature-dependent phase transition occurs in the neighborhood of 185 K for HB(3,5-Me(2)pz)(3)Zn; the other poly(pyrazolyl)borate complexes we investigated did not show this temperature-dependent behavior. This conclusion is confirmed by a combination of room-temperature high-field (18.8 T) solid-state (67)Zn NMR spectroscopy and low-temperature X-ray methods. The utilization of paramagnetic dopants should enable low-temperature cross polarization experiments to be performed on a wide variety of nuclides that are important in bioinorganic chemistry, for example, (25)Mg, (43)Ca, and (67)Zn.
已使用低温(10K)来增强玻尔兹曼因子,并结合从¹H到⁶⁷Zn的交叉极化(CP),获得了金属蛋白模型化合物的固态(⁶⁷Zn)核磁共振谱,如[H₂B(3,5-Me₂pz)₂]₂Zn(pz表示吡唑基环)。观察其他模型化合物(如[H₂B(pz)₂]₂Zn)的谱图时,由于质子的长弛豫时间而受到阻碍。为了缩短质子弛豫时间,已对高自旋六配位配合物[HB(3,4,5-Me₃pz)₃]₂Fe作为掺杂剂进行了研究。核磁共振和电子顺磁共振测量表明,这种Fe(II)掺杂剂在5-10K的温度范围内有效地缩短了锌样品的¹H自旋晶格弛豫时间T₁,同时对旋转坐标系中的¹H自旋晶格弛豫时间T₁ρ的扰动最小。使用这种方法,我们确定了四配位和六配位锌(II)聚(吡唑基)硼酸盐配合物的⁶⁷Zn核磁共振参数,这些配合物是具有生物学重要性的系统的有用模型。将⁶⁷Zn核磁共振参数与类似化合物的¹¹³Cd核磁共振参数的相应变化进行了对比。此外,这些研究表明,对于[HB(3,5-Me₂pz)₃]₂Zn,在185K附近发生了温度依赖性相变;我们研究的其他聚(吡唑基)硼酸盐配合物没有表现出这种温度依赖性行为。这一结论通过室温高场(18.8T)固态(⁶⁷Zn)核磁共振光谱和低温X射线方法得到证实