Shibata Yukie, Yamashita Yoshihisa, Ozaki Kazuhisa, Nakano Yoshio, Koga Toshihiko
Department of Preventive Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
Infect Immun. 2002 Jun;70(6):2891-8. doi: 10.1128/IAI.70.6.2891-2898.2002.
Six genes (rgpA through rgpF) that were involved in assembling the rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans were previously identified (Y. Yamashita, Y. Tsukioka, K. Tomihisa, Y. Nakano, and T. Koga, J. Bacteriol. 180:5803-5807, 1998). The group-specific antigens of Lancefield group A, C, and E streptococci and the polysaccharide antigen of Streptococcus sobrinus have the same rhamnan backbone as the RGP of S. mutans. Escherichia coli harboring plasmid pRGP1 containing all six rgp genes did not synthesize complete RGP. However, E. coli carrying a plasmid with all of the rgp genes except for rgpE synthesized the rhamnan backbone of RGP without glucose side chains, suggesting that in addition to rgpE, another gene is required for glucose side-chain formation. Synthesis of the rhamnan backbone in E. coli required the initiation of transfer of N-acetylglucosamine to a lipid carrier and the expression of the rgpC and rgpD genes encoding the putative ABC transporter specific for RGP. The similarities in RGP synthesis between E. coli and S. mutans suggest common pathways for rhamnan synthesis. Therefore, we evaluated the rhamnosyl polymerization process in E. coli by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the lipooligosaccharide (LOS). An E. coli transformant harboring rgpA produced the LOS modified by the addition of a single rhamnose residue. Furthermore, the rgpA, rgpB, and rgpF genes of pRGP1 were independently mutated by an internal deletion, and the LOS chemotypes of their transformants were examined. The transformant with an rgpA deletion showed the same LOS profile as E. coli without a plasmid. The transformant with an rgpB deletion showed the same LOS profile as E. coli harboring rgpA alone. The transformant with an rgpF deletion showed the LOS band with the most retarded migration. On the basis of these results, we speculated that RgpA, RgpB, and RgpF, in that order, function in rhamnan polymerization.
先前已鉴定出参与变形链球菌鼠李糖 - 葡萄糖多糖(RGP)组装的六个基因(rgpA至rgpF)(山下洋、月冈洋、富久贺健、中野洋、古贺彻,《细菌学杂志》180:5803 - 5807,1998年)。兰斯菲尔德A、C和E群链球菌的群特异性抗原以及远缘链球菌的多糖抗原与变形链球菌的RGP具有相同的鼠李聚糖主链。携带含有所有六个rgp基因的质粒pRGP1的大肠杆菌不能合成完整的RGP。然而,携带除rgpE之外所有rgp基因的质粒的大肠杆菌合成了没有葡萄糖侧链的RGP鼠李聚糖主链,这表明除了rgpE之外,葡萄糖侧链形成还需要另一个基因。大肠杆菌中鼠李聚糖主链的合成需要将N - 乙酰葡糖胺转移至脂质载体起始,以及编码假定的RGP特异性ABC转运蛋白的rgpC和rgpD基因的表达。大肠杆菌和变形链球菌在RGP合成方面的相似性表明鼠李聚糖合成存在共同途径。因此,我们通过脂寡糖(LOS)的高分辨率十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳评估了大肠杆菌中的鼠李糖基聚合过程。携带rgpA的大肠杆菌转化体产生了通过添加单个鼠李糖残基修饰的LOS。此外,通过内部缺失独立突变了pRGP1的rgpA、rgpB和rgpF基因,并检查了它们转化体的LOS化学型。缺失rgpA的转化体显示出与无质粒的大肠杆菌相同的LOS图谱。缺失rgpB的转化体显示出与仅携带rgpA质粒的大肠杆菌相同的LOS图谱。缺失rgpF的转化体显示出迁移最慢的LOS条带。基于这些结果,我们推测RgpA、RgpB和RgpF依次在鼠李聚糖聚合中发挥作用。