Suppr超能文献

随机取向软核棱柱体的连续渗流

Continuum percolation for randomly oriented soft-core prisms.

作者信息

Saar Martin O, Manga Michael

机构信息

Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):056131. doi: 10.1103/PhysRevE.65.056131. Epub 2002 May 22.

Abstract

We study continuum percolation of three-dimensional randomly oriented soft-core polyhedra (prisms). The prisms are biaxial or triaxial and range in aspect ratio over six orders of magnitude. Results for prisms are compared with studies for ellipsoids, rods, ellipses, and polygons and differences are explained using the concept of the average excluded volume, <v(ex)>. For large-shape anisotropies we find close agreement between prisms and most of the above-mentioned shapes for the critical total average excluded volume, n(c)<v(ex)>, where n(c) is the critical number density of objects at the percolation threshold. In the extreme oblate and prolate limits simulations yield n(c)<v(ex)> approximately 2.3 and n(c)<v(ex)> approximately 1.3, respectively. Cubes exhibit the lowest-shape anisotropy of prisms minimizing the importance of randomness in orientation. As a result, the maximum prism value, n(c)<v(ex)> approximately 2.79, is reached for cubes, a value close to n(c)<v(ex)>=2.8 for the most equant shape, a sphere. Similarly, cubes yield a maximum critical object volume fraction of phi(c)=0.22. phi(c) decreases for more prolate and oblate prisms and reaches a linear relationship with respect to aspect ratio for aspect ratios greater than about 50. Curves of phi(c) as a function of aspect ratio for prisms and ellipsoids are offset at low-shape anisotropies but converge in the extreme oblate and prolate limits. The offset appears to be a function of the ratio of the normalized average excluded volume for ellipsoids over that for prisms, R=<v(ex);>(e)/<v(ex);>(p). This ratio is at its minimum of R=0.758 for spheres and cubes, where phi(c(sphere))=0.2896 may be related to phi c(cube))=0.22 by phi(c(cube))=1-1-phi(c(sphere))=0.23. With respect to biaxial prisms, triaxial prisms show increased normalized average excluded volumes, <v(ex);>, due to increased shape anisotropies, resulting in reduced values of phi(c). We confirm that B(c)=n(c)<v(ex)>=2C(c) applies to prisms, where B(c) and C(c) are the average number of bonds per object and average number of connections per object, respectively.

摘要

我们研究了三维随机取向的软核多面体(棱柱)的连续渗流。这些棱柱是双轴或三轴的,纵横比范围跨越六个数量级。将棱柱的结果与椭球体、棒状体、椭圆和多边形的研究结果进行了比较,并使用平均排除体积<v(ex)>的概念解释了差异。对于大的形状各向异性,我们发现棱柱与上述大多数形状在临界总平均排除体积n(c)<v(ex)>方面密切一致,其中n(c)是渗流阈值处物体的临界数密度。在极端扁平和长轴极限情况下,模拟得出n(c)<v(ex)>分别约为2.3和n(c)<v(ex)>约为1.3。立方体呈现出棱柱中最低的形状各向异性,使取向随机性的重要性最小化。结果,立方体达到了棱柱的最大值n(c)<v(ex)>约为2.79,该值接近最接近球形的形状的n(c)<v(ex)>=2.8。同样,立方体产生的最大临界物体体积分数为phi(c)=0.22。对于更细长和更扁平的棱柱,phi(c)减小,并且对于大于约50的纵横比,它与纵横比呈线性关系。棱柱和椭球体的phi(c)作为纵横比的函数的曲线在低形状各向异性时偏移,但在极端扁平和长轴极限情况下收敛。这种偏移似乎是椭球体的归一化平均排除体积与棱柱的归一化平均排除体积之比R = <v(ex);>(e)/<v(ex);>(p)的函数。对于球体和立方体,该比率最小为R = 0.758,其中phi(c(sphere)) = 0.2896可能通过phi(c(cube)) = 1 - 1 - phi(c(sphere)) = 0.23与phi c(cube)) = 0.22相关。关于双轴棱柱,由于形状各向异性增加,三轴棱柱显示出增加的归一化平均排除体积<v(ex);>,导致phi(c)值降低。我们证实B(c)=n(c)<v(ex)>=2C(c)适用于棱柱,其中B(c)和C(c)分别是每个物体的平均键数和每个物体的平均连接数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验