Li Yi, Ryan Louise
Department of Biostatistics, Harvard School of Public Health and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
Biometrics. 2002 Jun;58(2):287-97. doi: 10.1111/j.0006-341x.2002.00287.x.
We propose a new class of semiparametric frailty models for spatially correlated survival data. Specifically, we extend the ordinary frailty models by allowing random effects accommodating spatial correlations to enter into the baseline hazard function multiplicatively. We prove identifiability of the models and give sufficient regularity conditions. We propose drawing inference based on a marginal rank likelihood. No parametric forms of the baseline hazard need to be assumed in this semiparametric approach. Monte Carlo simulations and the Laplace approach are used to tackle the intractable integral in the likelihood function. Different spatial covariance structures are explored in simulations and the proposed methods are applied to the East Boston Asthma Study to detect prognostic factors leading to childhood asthma.
我们针对空间相关的生存数据提出了一类新的半参数脆弱模型。具体而言,我们通过允许纳入空间相关性的随机效应以乘法方式进入基线风险函数,对普通脆弱模型进行了扩展。我们证明了模型的可识别性,并给出了充分的正则性条件。我们提出基于边际秩似然进行推断。在这种半参数方法中无需假设基线风险的参数形式。使用蒙特卡罗模拟和拉普拉斯方法来处理似然函数中难以处理的积分。在模拟中探索了不同的空间协方差结构,并将所提出的方法应用于东波士顿哮喘研究,以检测导致儿童哮喘的预后因素。