Suppr超能文献

MEGH:用于聚类生存数据的参数类广义风险模型。

MEGH: A parametric class of general hazard models for clustered survival data.

机构信息

Department of Statistical Science, University College London, London, UK.

Department of Mathematical Sciences, 3057Durham University, Durham, UK.

出版信息

Stat Methods Med Res. 2022 Aug;31(8):1603-1616. doi: 10.1177/09622802221102620. Epub 2022 Jun 6.

Abstract

In many applications of survival data analysis, the individuals are treated in different medical centres or belong to different clusters defined by geographical or administrative regions. The analysis of such data requires accounting for between-cluster variability. Ignoring such variability would impose unrealistic assumptions in the analysis and could affect the inference on the statistical models. We develop a novel parametric mixed-effects general hazard (MEGH) model that is particularly suitable for the analysis of clustered survival data. The proposed structure generalises the mixed-effects proportional hazards and mixed-effects accelerated failure time structures, among other structures, which are obtained as special cases of the MEGH structure. We develop a likelihood-based algorithm for parameter estimation in general subclasses of the MEGH model, which is implemented in our R package MEGH. We propose diagnostic tools for assessing the random effects and their distributional assumption in the proposed MEGH model. We investigate the performance of the MEGH model using theoretical and simulation studies, as well as a real data application on leukaemia.

摘要

在生存数据分析的许多应用中,个体被分配到不同的医疗中心或属于不同的聚类,这些聚类由地理或行政区域定义。分析此类数据需要考虑聚类间的变异性。忽略这种变异性会对分析中的假设提出不切实际的要求,并可能影响对统计模型的推断。我们开发了一种新颖的参数混合效应广义风险(MEGH)模型,该模型特别适用于聚类生存数据分析。所提出的结构概括了混合效应比例风险和混合效应加速失效时间结构等结构,这些结构是 MEGH 结构的特例。我们开发了一种基于似然的算法,用于在 MEGH 模型的一般子类中进行参数估计,该算法已在我们的 R 包 MEGH 中实现。我们提出了用于评估所提出的 MEGH 模型中随机效应及其分布假设的诊断工具。我们使用理论和模拟研究以及白血病的实际数据应用来研究 MEGH 模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a895/9315191/435e5ee2b9c9/10.1177_09622802221102620-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验