Rieger Randall H, Weinberg Clarice R
Department of Mathematics, West Chester University, Pennsylvania 19383-2136, USA.
Biometrics. 2002 Jun;58(2):332-41. doi: 10.1111/j.0006-341x.2002.00332.x.
Conditional logistic regression (CLR) is useful for analyzing clustered binary outcome data when interest lies in estimating a cluster-specific exposure parameter while treating the dependency arising from random cluster effects as a nuisance. CLR aggregates unmeasured cluster-specific factors into a cluster-specific baseline risk and is invalid in the presence of unmodeled heterogeneous covariate effects or within-cluster dependency. We propose an alternative, resampling-based method for analyzing clustered binary outcome data, within-cluster paired resampling (WCPR), which allows for within-cluster dependency not solely due to baseline heterogeneity. For example, dependency may be in part caused by heterogeneity in response to an exposure across clusters due to unmeasured cofactors. When both CLR and WCPR are valid, our simulations suggest that the two methods perform comparably. When CLR is invalid, WCPR continues to have good operating characteristics. For illustration, we apply both WCPR and CLR to a periodontal data set where there is heterogeneity in response to exposure across clusters.
条件逻辑回归(CLR)在分析聚类二元结局数据时很有用,当我们感兴趣的是估计特定聚类的暴露参数,同时将随机聚类效应产生的依赖性视为干扰因素时。CLR将未测量的特定聚类因素汇总为特定聚类的基线风险,并且在存在未建模的异质协变量效应或聚类内依赖性时无效。我们提出了一种基于重采样的替代方法,用于分析聚类二元结局数据,即聚类内配对重采样(WCPR),它允许存在不仅仅是由于基线异质性导致的聚类内依赖性。例如,依赖性可能部分是由于未测量的辅助因素导致跨聚类对暴露的反应存在异质性引起的。当CLR和WCPR都有效时,我们的模拟表明这两种方法表现相当。当CLR无效时,WCPR继续具有良好的操作特性。为了说明,我们将WCPR和CLR都应用于一个牙周数据集,其中跨聚类对暴露的反应存在异质性。