Suppr超能文献

具有潜在信息性簇大小的聚类纵向数据边缘线性模型的推断。

Inference for marginal linear models for clustered longitudinal data with potentially informative cluster sizes.

机构信息

Department of Bioinformatics and Biostatistics, University of Louisville, KY 40292, USA.

出版信息

Stat Methods Med Res. 2011 Aug;20(4):347-67. doi: 10.1177/0962280209347043. Epub 2010 Mar 11.

Abstract

Clustered longitudinal data are often collected as repeated measures on subjects arising in clusters. Examples include periodontal disease study, where the measurements related to the disease status of each tooth are collected over time for each patient, which can be considered as a cluster. For such applications, the number of teeth for each patient may be related to the overall oral health of the individual and hence may influence the distribution of the outcome measure of interest leading to an informative cluster size. Under such situations, generalised estimating equations (GEE) may lead to invalid inferences. In this article, we investigate the performance of three competing proposals of fitting marginal linear models to clustered longitudinal data, namely, GEE, within-cluster resampling (WCR) and cluster-weighted generalised estimating equations (CWGEE). We show by simulations and theoretical calculations that, when the cluster size is informative, GEE provides biased estimators, while both WCR and CWGEE achieve unbiasedness under a variety of 'working' correlation structures for temporal measurements within each subject. Statistical properties of confidence intervals have been investigated using the probability-probability plots. Overall, CWGEE appears to be the recommended choice for marginal parametric inference with clustered longitudinal data that achieves similar parameter estimates and test statistics as WCR while avoiding Monte Carlo computation. The corresponding Wald tests have desirable power properties as well. We illustrate our analysis using a temporal data set on periodontal disease, which clearly demonstrates the need for CWGEE over GEE.

摘要

聚类纵向数据通常是在聚类中对受试者进行重复测量而收集的。例如,牙周病研究,其中与每个患者的牙齿疾病状况相关的测量值随时间收集,每个患者的牙齿数量可能与个体的整体口腔健康有关,因此可能会影响感兴趣的结果测量值的分布,从而导致信息丰富的聚类大小。在这种情况下,广义估计方程(GEE)可能会导致无效的推断。在本文中,我们研究了拟合聚类纵向数据的三种有竞争力的边际线性模型的性能,即 GEE、聚类内重采样(WCR)和聚类加权广义估计方程(CWGEE)。我们通过模拟和理论计算表明,当聚类大小具有信息量时,GEE 提供有偏估计量,而 WCR 和 CWGEE 在各种“工作”相关结构下都能实现无偏性对于每个受试者内的时间测量。置信区间的统计性质已通过概率-概率图进行了研究。总体而言,CWGEE 似乎是具有聚类纵向数据的边际参数推断的推荐选择,它可以实现与 WCR 相似的参数估计和检验统计量,同时避免了蒙特卡罗计算。相应的 Wald 检验也具有理想的功效特性。我们使用牙周病的时间数据集说明了我们的分析,这清楚地表明需要 CWGEE 而不是 GEE。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验