Suppr超能文献

亚组水平协变量的信息性聚类大小与加权广义估计方程。

Informative cluster sizes for subcluster-level covariates and weighted generalized estimating equations.

作者信息

Huang Ying, Leroux Brian

机构信息

Department of Biostatistics, Columbia University, New York, New York 10032, USA.

出版信息

Biometrics. 2011 Sep;67(3):843-51. doi: 10.1111/j.1541-0420.2010.01542.x. Epub 2011 Jan 31.

Abstract

Williamson, Datta, and Satten's (2003, Biometrics 59, 36-42) cluster-weighted generalized estimating equations (CWGEEs) are effective in adjusting for bias due to informative cluster sizes for cluster-level covariates. We show that CWGEE may not perform well, however, for covariates that can take different values within a cluster if the numbers of observations at each covariate level are informative. On the other hand, inverse probability of treatment weighting accounts for informative treatment propensity but not for informative cluster size. Motivated by evaluating the effect of a binary exposure in presence of such types of informativeness, we propose several weighted GEE estimators, with weights related to the size of a cluster as well as the distribution of the binary exposure within the cluster. Choice of the weights depends on the population of interest and the nature of the exposure. Through simulation studies, we demonstrate the superior performance of the new estimators compared to existing estimators such as from GEE, CWGEE, and inverse probability of treatment-weighted GEE. We demonstrate the use of our method using an example examining covariate effects on the risk of dental caries among small children.

摘要

威廉姆森、达塔和萨滕(2003年,《生物统计学》第59卷,第36 - 42页)提出的聚类加权广义估计方程(CWGEEs)在调整聚类水平协变量因信息性聚类大小导致的偏差方面很有效。然而,我们表明,如果每个协变量水平上的观测数量具有信息性,对于聚类内可取值不同的协变量,CWGEE可能表现不佳。另一方面,治疗权重的逆概率考虑了信息性治疗倾向,但未考虑信息性聚类大小。出于评估在存在此类信息性情况下二元暴露效应的动机,我们提出了几种加权广义估计方程估计量,其权重与聚类大小以及聚类内二元暴露的分布有关。权重的选择取决于目标总体和暴露的性质。通过模拟研究,我们证明了新估计量相对于现有估计量(如广义估计方程、CWGEE和治疗权重逆概率加权广义估计方程的估计量)具有更优的性能。我们通过一个研究协变量对幼儿龋齿风险影响的例子展示了我们方法的应用。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验