Suppr超能文献

对存在结局和暴露错误分类的二次利用数据进行最优多波验证。

Optimal multiwave validation of secondary use data with outcome and exposure misclassification.

作者信息

Lotspeich Sarah C, Amorim Gustavo G C, Shaw Pamela A, Tao Ran, Shepherd Bryan E

机构信息

Department of Statistical Sciences, Wake Forest University, Winston-Salem, 27109, North Carolina, U.S.A.

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, 37203, Tennessee, U.S.A.

出版信息

Can J Stat. 2024 Jun;52(2):532-554. doi: 10.1002/cjs.11772. Epub 2023 Mar 31.

Abstract

Observational databases provide unprecedented opportunities for secondary use in biomedical research. However, these data can be error-prone and must be validated before use. It is usually unrealistic to validate the whole database because of resource constraints. A cost-effective alternative is a two-phase design that validates a subset of records enriched for information about a particular research question. We consider odds ratio estimation under differential outcome and exposure misclassification and propose optimal designs that minimize the variance of the maximum likelihood estimator. Our adaptive grid search algorithm can locate the optimal design in a computationally feasible manner. Because the optimal design relies on unknown parameters, we introduce a multiwave strategy to approximate the optimal design. We demonstrate the proposed design's efficiency gains through simulations and two large observational studies.

摘要

观察性数据库为生物医学研究中的二次利用提供了前所未有的机会。然而,这些数据可能容易出错,在使用前必须进行验证。由于资源限制,验证整个数据库通常是不现实的。一种经济高效的替代方法是两阶段设计,即验证为特定研究问题丰富了信息的记录子集。我们考虑了在差异结果和暴露错误分类情况下的优势比估计,并提出了使最大似然估计器的方差最小化的最优设计。我们的自适应网格搜索算法能够以计算可行的方式找到最优设计。由于最优设计依赖于未知参数,我们引入了多波策略来近似最优设计。我们通过模拟和两项大型观察性研究展示了所提出设计的效率提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5c6/11610482/457d65c579d3/nihms-2035539-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验