Zhou Haibo, Qin Guoyou, Longnecker Matthew P
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7420, USA.
Biometrics. 2011 Sep;67(3):876-85. doi: 10.1111/j.1541-0420.2010.01500.x. Epub 2010 Oct 29.
Outcome-dependent sampling (ODS) has been widely used in biomedical studies because it is a cost-effective way to improve study efficiency. However, in the setting of a continuous outcome, the representation of the exposure variable has been limited to the framework of linear models, due to the challenge in terms of both theory and computation. Partial linear models (PLM) are a powerful inference tool to nonparametrically model the relation between an outcome and the exposure variable. In this article, we consider a case study of a PLM for data from an ODS design. We propose a semiparametric maximum likelihood method to make inferences with a PLM. We develop the asymptotic properties and conduct simulation studies to show that the proposed ODS estimator can produce a more efficient estimate than that from a traditional simple random sampling design with the same sample size. Using this newly developed method, we were able to explore an open question in epidemiology: whether in utero exposure to background levels of polychlorinated biphenyls (PCBs) is associated with children's intellectual impairment. Our model provides further insights into the relation between low-level PCB exposure and children's cognitive function. The results shed new light on a body of inconsistent epidemiologic findings.
基于结果的抽样(ODS)已在生物医学研究中广泛应用,因为它是提高研究效率的一种经济有效的方法。然而,在连续结果的情况下,由于理论和计算方面的挑战,暴露变量的表示一直局限于线性模型框架。部分线性模型(PLM)是对结果与暴露变量之间关系进行非参数建模的强大推断工具。在本文中,我们考虑一个针对ODS设计数据的PLM案例研究。我们提出一种半参数最大似然方法来对PLM进行推断。我们推导了渐近性质并进行模拟研究,以表明所提出的ODS估计器比具有相同样本量的传统简单随机抽样设计能产生更有效的估计。使用这种新开发的方法,我们能够探索流行病学中的一个开放性问题:子宫内暴露于背景水平的多氯联苯(PCBs)是否与儿童智力障碍有关。我们的模型为低水平PCB暴露与儿童认知功能之间的关系提供了进一步的见解。这些结果为一系列不一致的流行病学发现提供了新的线索。