Rajapakse Jagath C, Wang Yang, Zheng Xuebin, Zhou Juan
School of Computer Engineering and the BioInformatics Research Centre, Nanyang Technological University, 50 Nanyang Avenue,639798 Singapore.
IEEE Trans Med Imaging. 2008 Jun;27(6):825-33. doi: 10.1109/TMI.2008.915672.
This paper unifies our earlier work on detection of brain activation (Rajapakse and Piyaratna, 2001) and connectivity (Rajapakse and Zhou, 2007) in a probabilistic framework for analyzing effective connectivity among activated brain regions from functional magnetic resonance imaging (fMRI) data. Interactions among brain regions are expressed by a dynamic Bayesian network (DBN) while contextual dependencies within functional images are formulated by a Markov random field. The approach simultaneously considers both the detection of brain activation and the estimation of effective connectivity and does not require a priori model of connectivity. Experimental results show that the present approach outperforms earlier fMRI analysis techniques on synthetic functional images and robustly derives brain connectivity from real fMRI data.
本文将我们早期关于脑激活检测(Rajapakse和Piyaratna,2001年)以及连通性(Rajapakse和Zhou,2007年)的工作统一在一个概率框架中,用于分析来自功能磁共振成像(fMRI)数据的激活脑区之间的有效连通性。脑区之间的相互作用由动态贝叶斯网络(DBN)表示,而功能图像内的上下文依赖性则由马尔可夫随机场来制定。该方法同时考虑了脑激活检测和有效连通性估计,并且不需要连通性的先验模型。实验结果表明,本方法在合成功能图像上优于早期的fMRI分析技术,并且能够从真实的fMRI数据中稳健地推导脑连通性。