Suppr超能文献

从荟萃分析成像数据中学习部分定向功能网络。

Learning partially directed functional networks from meta-analysis imaging data.

机构信息

Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103, Leipzig, Germany.

出版信息

Neuroimage. 2010 Jan 15;49(2):1372-84. doi: 10.1016/j.neuroimage.2009.09.056. Epub 2009 Oct 6.

Abstract

We propose a new exploratory method for the discovery of partially directed functional networks from fMRI meta-analysis data. The method performs structure learning of Bayesian networks in search of directed probabilistic dependencies between brain regions. Learning is based on the co-activation of brain regions observed across several independent imaging experiments. In a series of simulations, we first demonstrate the reliability of the method. We then present the application of our approach in an extensive meta-analysis including several thousand activation coordinates from more than 500 imaging studies. Results show that our method is able to automatically infer Bayesian networks that capture both directed and undirected probabilistic dependencies between a number of brain regions, including regions that are frequently observed in motor-related and cognitive control tasks.

摘要

我们提出了一种新的探索性方法,用于从 fMRI 元分析数据中发现部分有向功能网络。该方法在搜索脑区之间有向概率依赖关系时执行贝叶斯网络的结构学习。学习是基于在几个独立的成像实验中观察到的脑区的共同激活。在一系列模拟中,我们首先证明了该方法的可靠性。然后,我们将我们的方法应用于一个广泛的元分析中,其中包括来自 500 多个成像研究的数千个激活坐标。结果表明,我们的方法能够自动推断出贝叶斯网络,这些网络能够捕捉到包括运动相关和认知控制任务中经常观察到的区域在内的多个脑区之间的有向和无向概率依赖关系。

相似文献

3
Learning effective brain connectivity with dynamic Bayesian networks.通过动态贝叶斯网络学习有效的脑连接性。
Neuroimage. 2007 Sep 1;37(3):749-60. doi: 10.1016/j.neuroimage.2007.06.003. Epub 2007 Jun 14.
4
Bayesian meta-analysis of fMRI image data.功能磁共振成像(fMRI)图像数据的贝叶斯荟萃分析。
Cogn Neurosci. 2019 Jan-Apr;10(2):66-76. doi: 10.1080/17588928.2019.1570103. Epub 2019 Feb 6.
8
Learning functional structure from fMR images.从功能磁共振成像(fMR)图像中学习功能结构。
Neuroimage. 2006 Jul 15;31(4):1601-13. doi: 10.1016/j.neuroimage.2006.01.031. Epub 2006 Mar 15.

引用本文的文献

2
Bayesian networks in neuroscience: a survey.贝叶斯网络在神经科学中的应用:综述。
Front Comput Neurosci. 2014 Oct 16;8:131. doi: 10.3389/fncom.2014.00131. eCollection 2014.
6
Meta-analytic methods for neuroimaging data explained.神经影像数据的荟萃分析方法解析。
Biol Mood Anxiety Disord. 2012 Mar 8;2:6. doi: 10.1186/2045-5380-2-6.
7
Distributed processing; distributed functions?分布式处理;分布式功能?
Neuroimage. 2012 Jun;61(2):407-26. doi: 10.1016/j.neuroimage.2011.12.051. Epub 2012 Jan 5.

本文引用的文献

3
Correspondence of the brain's functional architecture during activation and rest.大脑在激活和静息状态下功能结构的对应关系。
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
5
Lost in localization: the need for a universal coordinate database.迷失在定位中:对通用坐标数据库的需求。
Neuroimage. 2009 Oct 15;48(1):1-7. doi: 10.1016/j.neuroimage.2009.01.053. Epub 2009 Feb 5.
10
Functional coactivation map of the human brain.人类大脑的功能共激活图谱。
Cereb Cortex. 2008 Nov;18(11):2553-9. doi: 10.1093/cercor/bhn014. Epub 2008 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验