Farkas J, Andrássy E, Formanek Z, Mészáros L
Department of Refrigeration and Livestock Products' Technology, Szent István University, Ménesi út 45, H-1118 Budapest, Hungary.
Acta Microbiol Immunol Hung. 2002;49(1):141-50. doi: 10.1556/AMicr.49.2002.1.14.
A bioluminescent derivative of Bacillus subtilis containing a plasmid encoding a luxAB fusion under control of a vegetative promoter and gives bioluminescence upon addition of an exogenous long-chain aldehyde has been used as test organism. Its spore populations have been produced and their heat- and radiation survival curves established. Heat-sensitization effect of pre-irradiation of spores was proven not only by colony counting but also with differential scanning calorimetry. Under a linearly programmed temperature increase, the heat destruction of spores surviving 2.5 kGy gamma irradiation resulted in at a few centigrade lower temperature than that of untreated spores. Heat denaturation endotherms in the DSC-thermogram of irradiated spores were shifted to lower temperatures as well. Comparative turbidimetric, luminometric and phase-contrast microscopic studies of untreated, heat-treated and irradiated spore populations showed that the kinetics of germination and the light emission during germination of radiation-inactivated spores were the same as those of untreated spores, revealing that the pre-formed luciferase enzyme packaged into the spores during sporulation remained intact after an irradiation dose causing 90% decrease in number of colony forming spores. Therefore, in contrast to heat-treated spores, the initial bioluminescence reading upon germination of irradiated spores does not reflect the viable count of their population.