文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用光超极化(CIDNP)NMR 进行超快碎片筛选。

Ultrafast Fragment Screening Using Photo-Hyperpolarized (CIDNP) NMR.

机构信息

ETH, Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.

NexMR GmbH, Wiesenstrasse 10A, 8952 Schlieren, Switzerland.

出版信息

J Am Chem Soc. 2023 Jun 7;145(22):12066-12080. doi: 10.1021/jacs.3c01392. Epub 2023 May 25.


DOI:10.1021/jacs.3c01392
PMID:37227050
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10251509/
Abstract

While nuclear magnetic resonance (NMR) is regarded as a reference in fragment-based drug design, its implementation in a high-throughput manner is limited by its lack of sensitivity resulting in long acquisition times and high micromolar sample concentrations. Several hyperpolarization approaches could, in principle, improve the sensitivity of NMR also in drug research. However, photochemically induced dynamic nuclear polarization (photo-CIDNP) is the only method that is directly applicable in aqueous solution and agile for scalable implementation using off-the-shelf hardware. With the use of photo-CIDNP, this work demonstrates the detection of weak binders in the millimolar affinity range using low micromolar concentrations down to 5 μM of ligand and 2 μM of target, thereby exploiting the photo-CIDNP-induced polarization twice: (i) increasing the signal-to-noise by one to two orders in magnitude and (ii) polarization-only of the free non-bound molecule allowing identification of binding by polarization quenching, yielding another factor of hundred in time when compared with standard techniques. The interaction detection was performed with single-scan NMR experiments of a duration of 2 to 5 s. Taking advantage of the readiness of photo-CIDNP setup implementation, an automated flow-through platform was designed to screen samples at a screening rate of 1500 samples per day. Furthermore, a 212 compounds photo-CIDNP fragment library is presented, opening an avenue toward a comprehensive fragment-based screening method.

摘要

虽然核磁共振(NMR)被认为是基于片段的药物设计的参考方法,但由于灵敏度不足,导致采集时间长和微摩尔级样品浓度高,其在高通量中的应用受到限制。几种超极化方法原则上可以提高 NMR 在药物研究中的灵敏度。然而,光诱导动态核极化(photo-CIDNP)是唯一一种可直接应用于水溶液且可灵活使用现成硬件进行可扩展实施的方法。本工作使用 photo-CIDNP 展示了使用低微摩尔浓度(低至 5 μM 的配体和 2 μM 的靶标)在毫摩尔亲和力范围内检测弱结合物的能力,从而两次利用了 photo-CIDNP 诱导的极化:(i) 将信号与噪声比提高一到两个数量级,以及 (ii) 仅对自由未结合分子进行极化,通过极化猝灭识别结合,与标准技术相比,时间上提高了一百倍。通过持续时间为 2 至 5 秒的单次扫描 NMR 实验进行相互作用检测。利用 photo-CIDNP 设备实施的便利性,设计了一个自动化的流通式平台,每天可筛选 1500 个样本。此外,还展示了一个 212 个化合物的 photo-CIDNP 片段文库,为全面的基于片段的筛选方法开辟了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/1fc65d538b41/ja3c01392_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/dbda61d0cd7d/ja3c01392_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/1f09d337d467/ja3c01392_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/5836777ba3dc/ja3c01392_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/cdeaaa62a676/ja3c01392_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/814c964debaf/ja3c01392_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/eca3ffc6d3ca/ja3c01392_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/1fc65d538b41/ja3c01392_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/dbda61d0cd7d/ja3c01392_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/1f09d337d467/ja3c01392_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/5836777ba3dc/ja3c01392_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/cdeaaa62a676/ja3c01392_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/814c964debaf/ja3c01392_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/eca3ffc6d3ca/ja3c01392_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aab/10251509/1fc65d538b41/ja3c01392_0008.jpg

相似文献

[1]
Ultrafast Fragment Screening Using Photo-Hyperpolarized (CIDNP) NMR.

J Am Chem Soc. 2023-6-7

[2]
Low-cost LED-based Photo-CIDNP Enables Biocompatible Hyperpolarization of F for NMR and MRI at 7 T and 4.7 T.

Chemphyschem. 2018-10-5

[3]
Fragment Screening and Fast Micromolar Detection on a Benchtop NMR Spectrometer Boosted by Photoinduced Hyperpolarization.

Angew Chem Int Ed Engl. 2023-10-2

[4]
Rapid Protein-Ligand Affinity Determination by Photoinduced Hyperpolarized NMR.

J Am Chem Soc. 2024-7-3

[5]
Enhanced nuclear-spin hyperpolarization of amino acids and proteins via reductive radical quenchers.

J Magn Reson. 2021-3

[6]
Assignment of NMR resonances of protons covalently bound to photochemically active cofactors in photosynthetic reaction centers by C-H photo-CIDNP MAS-J-HMQC experiment.

J Magn Reson. 2018-11-29

[7]
Fluorescein: A Photo-CIDNP Sensitizer Enabling Hypersensitive NMR Data Collection in Liquids at Low Micromolar Concentration.

J Phys Chem B. 2016-2-4

[8]
Fast-pulsing LED-enhanced NMR: A convenient and inexpensive approach to increase NMR sensitivity.

J Chem Phys. 2019-12-28

[9]
Photochemically Induced Dynamic Nuclear Polarization of Heteronuclear Singlet Order.

J Phys Chem Lett. 2021-5-20

[10]
A novel tri-enzyme system in combination with laser-driven NMR enables efficient nuclear polarization of biomolecules in solution.

J Phys Chem B. 2013-4-30

引用本文的文献

[1]
Photo-CIDNP for quantification of micromolar analytes in urine.

Commun Chem. 2025-8-1

[2]
Predictions of Steady-State Photo-CIDNP Enhancement by Machine Learning.

J Am Chem Soc. 2025-8-6

[3]
Target Engagement Assays in Early Drug Discovery.

J Med Chem. 2025-6-26

[4]
Light-coupled cryogenic probes to detect low-micromolar samples and allow for an automated NMR platform.

Magn Reson (Gott). 2024-5-15

[5]
Emerging ultrafast technologies in biotechnology.

3 Biotech. 2025-5

[6]
Micromolar Concentration Affinity Study on a Benchtop NMR Spectrometer with Secondary C Labeled Hyperpolarized Ligands.

ACS Omega. 2025-1-24

[7]
Bullet-DNP Enables NMR Spectroscopy of Pyruvate and Amino Acids at Nanomolar to Low Micromolar Concentrations.

Anal Chem. 2024-9-17

[8]
Hollow Fiber-in-Syringe Equilibrium Sampling Through Supported-Liquid Membrane for Evaluation of Drug-Plasma Binding.

Bioanalysis. 2024

[9]
Harnessing Nuclear Magnetic Resonance Spectroscopy to Decipher Structure and Dynamics of Clathrate Hydrates in Confinement: A Perspective.

Molecules. 2024-7-18

[10]
Rapid Protein-Ligand Affinity Determination by Photoinduced Hyperpolarized NMR.

J Am Chem Soc. 2024-7-3

本文引用的文献

[1]
Sample illumination device facilitates in situ light-coupled NMR spectroscopy without fibre optics.

Commun Chem. 2022-8-4

[2]
Acquisitions with random shim values enhance AI-driven NMR shimming.

J Magn Reson. 2022-12

[3]
Atomic resolution protein allostery from the multi-state structure of a PDZ domain.

Nat Commun. 2022-10-20

[4]
Fragment Libraries Designed to Be Functionally Diverse Recover Protein Binding Information More Efficiently Than Standard Structurally Diverse Libraries.

J Med Chem. 2022-8-25

[5]
Screening of Protein-Ligand Binding Using a SABRE Hyperpolarized Reporter.

Anal Chem. 2022-8-16

[6]
Selective Isotope Labeling and LC-Photo-CIDNP Enable NMR Spectroscopy at Low-Nanomolar Concentration.

J Am Chem Soc. 2022-7-6

[7]
Magic Rings: Navigation in the Ring Chemical Space Guided by the Bioactive Rings.

J Chem Inf Model. 2022-5-9

[8]
Exploring protein hotspots by optimized fragment pharmacophores.

Nat Commun. 2021-5-27

[9]
Molecular features toward high photo-CIDNP hyperpolariztion explored through the oxidocyclization of tryptophan.

Phys Chem Chem Phys. 2021-3-21

[10]
Protein-fragment complex structures derived by NMR molecular replacement.

RSC Med Chem. 2020-4-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索