Suppr超能文献

Construction of hydrogen-bonded and coordination-bonded networks of cobalt(II) with pyromellitate: synthesis, structures, and magnetic properties.

作者信息

Kumagai Hitoshi, Kepert Cameron J, Kurmoo Mohamedally

机构信息

Institut de Physique et Chimie des Matériaux de Strasbourg, 23 rue du Loess, 67037 Strasbourg Cedex, France.

出版信息

Inorg Chem. 2002 Jul 1;41(13):3410-22. doi: 10.1021/ic020065y.

Abstract

Synthesis (hydrothermal and metathesis), characterization (UV-vis, IR, TG/DTA), single-crystal X-ray structures, and magnetic properties of three cobalt(II)-pyromellitate complexes, purple Co(2)(pm) (1), red Co(2)(pm)(H(2)O)(4) x 2nH(2)O (2), and pink Co(H(2)O)(6) (3) (H(4)pm = pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid)), are described. 1 consists of one-dimensional chains of edge-sharing CoO(6) octahedra that are connected into layers via O-C-O bridges. The layers are held together by the pyromellitate (pm(4-)) backbone to give a three-dimensional structure, each ligand participating in an unprecedented 12 coordination bonds (Co-O) to 10 cobalt atoms. 2 consists of a three-dimensional coordination network possessing cavities in which unbound water molecules reside. This highly symmetric network comprises eight coordinate bonds (Co-O) between oxygen atoms of pm(4-) to six trans-Co(H(2)O)(2). 3 possesses a hydrogen-bonded sandwich structure associating layers of Co(H(2)O)(6) and planar H(2)pm(2-). The IR spectra, reflecting the different coordination modes and charges of the pyromellitate, are presented and discussed. The magnetic properties of 1 indicate complex behavior with three ground states (collinear and canted antiferromagnetism and field-induced ferromagnetism). Above the Néel temperature (T(N)) of 16 K it displays paramagnetism with short-range ferromagnetic interactions (Theta = +16.4 K, mu(eff) = 4.90 mu(B) per Co). Below T(N) a weak spontaneous magnetization is observed at 12.8 K in low applied fields (H < 100 Oe). At higher fields (H > 1000 Oe) metamagnetic behavior is observed. Two types of hysteresis loops are observed; one centered about zero field and the second about the metamagnetic critical field. The critical field and the hysteresis width increase as the temperature is lowered. The heat capacity data suggest that 1 has a 2D or 3D magnetic lattice, and the derived magnetic entropy data confirm an anisotropic s(eff) = 1/2 for the cobalt(II) ion. Magnetic susceptibility data indicate that 2 and 3 are paramagnets.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验