Suppr超能文献

分析拟南芥中的基因含量。

Assaying gene content in Arabidopsis.

作者信息

Allen Keith D

机构信息

Bioinformatics Department, Paradigm Genetics, 108 TW Alexander Drive, Building 1A, Research Triangle Park, NC 27709-4528, USA.

出版信息

Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9568-72. doi: 10.1073/pnas.142126599. Epub 2002 Jun 27.

Abstract

Arabidopsis has been popular as a model plant system for decades. Completion of the Arabidopsis genome and the availability of large expressed sequence-tag collections from other dicot species provides an opportunity to assess gene content in Arabidopsis, specifically by identifying genes from dicot test species that are absent from Arabidopsis. I report here results from these sorts of comparisons, carried out in part to assess the extent to which Arabidopsis is representative of dicot genomes and also the degree to which gene loss and novel gene acquisition has accompanied angiosperm speciation. More than 10% of the contigs from each of three dicot test species have no detectable homologue in Arabidopsis. By means of cross comparison among the test species, 154 specific cases of gene loss in the lineage leading to Arabidopsis were identified, including several well characterized enzymes and a group of proteins with strong homologs in the photosynthetic bacterium Synechocystis. These results show that although Arabidopsis is broadly representative of the other dicot genomes, there seems to be substantial variation even among relatively closely related genera. Further, although we cannot yet draw a causative link, variation in actual gene content seems appears to be a feature of angiosperm speciation.

摘要

几十年来,拟南芥一直是一种广受欢迎的模式植物系统。拟南芥基因组的完成以及来自其他双子叶植物物种的大量表达序列标签文库的可得性,为评估拟南芥中的基因组成提供了契机,特别是通过鉴定拟南芥中不存在的双子叶测试物种的基因。我在此报告这类比较的结果,部分目的是评估拟南芥在多大程度上代表双子叶植物基因组,以及基因丢失和新基因获得在被子植物物种形成过程中伴随出现的程度。来自三个双子叶测试物种中每个物种的超过10%的重叠群在拟南芥中没有可检测到的同源物。通过在测试物种之间进行交叉比较,确定了在导致拟南芥的谱系中154个基因丢失的具体案例,包括几种特征明确的酶以及一组在光合细菌集胞藻中有强同源物的蛋白质。这些结果表明,尽管拟南芥广泛代表了其他双子叶植物基因组,但即使在亲缘关系相对较近的属之间似乎也存在很大差异。此外,尽管我们尚未得出因果联系,但实际基因组成的差异似乎是被子植物物种形成的一个特征。

相似文献

1
Assaying gene content in Arabidopsis.
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9568-72. doi: 10.1073/pnas.142126599. Epub 2002 Jun 27.
2
Species-specific size expansion and molecular evolution of the oleosins in angiosperms.
Gene. 2012 Nov 10;509(2):247-57. doi: 10.1016/j.gene.2012.08.014. Epub 2012 Aug 24.
3
Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms.
Mol Biol Evol. 2004 Mar;21(3):506-19. doi: 10.1093/molbev/msh044. Epub 2003 Dec 23.
4
Formin homology 2 domains occur in multiple contexts in angiosperms.
BMC Genomics. 2004 Jul 15;5(1):44. doi: 10.1186/1471-2164-5-44.
5
Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms.
Mol Biol Evol. 2009 Aug;26(8):1745-55. doi: 10.1093/molbev/msp084. Epub 2009 Apr 22.
6
Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
J Genet Genomics. 2008 Feb;35(2):105-18. doi: 10.1016/S1673-8527(08)60016-8.
7
Rapid evolution of a pollen-specific oleosin-like gene family from Arabidopsis thaliana and closely related species.
Mol Biol Evol. 2004 Apr;21(4):659-69. doi: 10.1093/molbev/msh059. Epub 2004 Jan 22.
9
Protease gene families in Populus and Arabidopsis.
BMC Plant Biol. 2006 Dec 20;6:30. doi: 10.1186/1471-2229-6-30.
10
Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa).
Gene. 2007 Jun 1;394(1-2):13-24. doi: 10.1016/j.gene.2007.01.006. Epub 2007 Jan 26.

引用本文的文献

1
Selection of GmSWEET39 for oil and protein improvement in soybean.
PLoS Genet. 2020 Nov 11;16(11):e1009114. doi: 10.1371/journal.pgen.1009114. eCollection 2020 Nov.
2
Divergent nod-containing Bradyrhizobium sp. DOA9 with a megaplasmid and its host range.
Microbes Environ. 2014;29(4):370-6. doi: 10.1264/jsme2.ME14065. Epub 2014 Oct 4.
3
Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization.
Int J Genomics. 2014;2014:701596. doi: 10.1155/2014/701596. Epub 2014 Apr 3.
4
5
Identification and characterization of lineage-specific genes within the Poaceae.
Plant Physiol. 2007 Dec;145(4):1311-22. doi: 10.1104/pp.107.104513. Epub 2007 Oct 19.
6
Birth, life and death of developmental control genes: new challenges for the homology concept.
Theory Biosci. 2005 Nov;124(2):199-212. doi: 10.1016/j.thbio.2005.08.003. Epub 2005 Oct 6.
7
Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis.
Plant Mol Biol. 2006 Nov;62(4-5):485-501. doi: 10.1007/s11103-006-9035-9. Epub 2006 Sep 26.
8
Phytome: a platform for plant comparative genomics.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D724-30. doi: 10.1093/nar/gkj045.
9
A Populus EST resource for plant functional genomics.
Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13951-6. doi: 10.1073/pnas.0401641101. Epub 2004 Sep 7.
10
Contrasting modes of diversification in the Aux/IAA and ARF gene families.
Plant Physiol. 2004 Jul;135(3):1738-52. doi: 10.1104/pp.104.039669. Epub 2004 Jul 9.

本文引用的文献

2
Assaying ornithine and arginine decarboxylases in some plant species.
Plant Physiol. 1985 Oct;79(2):509-14. doi: 10.1104/pp.79.2.509.
3
Gene transfer to the nucleus and the evolution of chloroplasts.
Nature. 1998 May 14;393(6681):162-5. doi: 10.1038/30234.
4
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.
Nature. 2000 Dec 14;408(6814):796-815. doi: 10.1038/35048692.
6
Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology.
Nature. 1999 Nov 25;402(6760):402-4. doi: 10.1038/46528.
7
CAP3: A DNA sequence assembly program.
Genome Res. 1999 Sep;9(9):868-77. doi: 10.1101/gr.9.9.868.
10
Gene transfer from organelles to the nucleus: how much, what happens, and Why?
Plant Physiol. 1998 Sep;118(1):9-17. doi: 10.1104/pp.118.1.9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验