Suppr超能文献

衣霉素的生物合成及11碳二醛糖衣霉素胺的代谢起源

Biosynthesis of tunicamycin and metabolic origin of the 11-carbon dialdose sugar, tunicamine.

作者信息

Tsvetanova Billyana C, Kiemle David J, Price Neil P J

机构信息

Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, USA.

出版信息

J Biol Chem. 2002 Sep 20;277(38):35289-96. doi: 10.1074/jbc.M201345200. Epub 2002 Jul 1.

Abstract

Tunicamycin is a reversible inhibitor of polyprenol-phosphate: N-acetylhexosamine-1-phosphate translocases and is produced by several Streptomyces species. We have examined tunicamycin biosynthesis, an important but poorly characterized biosynthetic pathway. Biosynthetic precursors have been identified by incorporating radioactive and stable isotopes, and by determining the labeling pattern using electrospray ionization-collision induced dissociation-mass spectrometry (ESI-CID-MS), and proton, deuterium, and C-13 nuclear magnetic resonance (NMR) spectroscopy. Preparation and analysis of [uracil-5-(2)H]-labeled tunicamycin established the complete ESI-CID-MS fragmentation pathway for the major components of the tunicamycin complex. Competitive metabolic experiments indicate that 7 deuteriums incorporate into tunicamycin from [6,6'-(2)H,(2)H]-labeled D-glucose, 6 of which arise from D-GlcNAc and 1 from uridine and/or D-ribose. Inverse correlation NMR experiments (heteronuclear single-quantum coherence (HSQC)) of (13)C-labeled tunicamycin enriched from D-[1-(13)C]glucose suggest that the unique tunicamine 11-carbon dialdose sugar backbone arises from a 5-carbon furanose precursor derived from uridine and a 6-carbon N-acetylamino-pyranose precursor derived from UDP-D-N-acetylglucosamine. The equivalent incorporation of (13)C into both the alpha-1" and beta-11' anomeric carbons of tunicamycin supports a direct biosynthesis via 6-carbon metabolism. It also indicates that the tunicamine motif and the alpha-1"-linked GlcNAc residue are both derived from the same metabolic pool of UDP-GlcNAc, without significant differential metabolic processing. A biosynthetic pathway is therefore proposed for tunicamycin for the first time: an initial formation of the 11-carbon tunicamine sugar motif from uridine and UDP-GlcNAc via uridine-5'-aldehyde and UDP-4-keto-6-ene-N-acetylhexosamine, respectively, and subsequent formation of the anomeric-to-anomeric alpha, beta-1",11'-glycosidic bond.

摘要

衣霉素是聚戊烯磷酸

N-乙酰己糖胺-1-磷酸转运酶的可逆抑制剂,由几种链霉菌属产生。我们研究了衣霉素的生物合成,这是一条重要但特征尚不明确的生物合成途径。通过掺入放射性和稳定同位素,并使用电喷雾电离-碰撞诱导解离-质谱(ESI-CID-MS)以及质子、氘和碳-13核磁共振(NMR)光谱来确定标记模式,从而鉴定了生物合成前体。制备并分析[尿嘧啶-5-(2)H]标记的衣霉素,确定了衣霉素复合物主要成分的完整ESI-CID-MS裂解途径。竞争性代谢实验表明,7个氘从[6,6'-(2)H,(2)H]标记的D-葡萄糖掺入衣霉素,其中6个来自D-GlcNAc,1个来自尿苷和/或D-核糖。对从D-[1-(13)C]葡萄糖富集的(13)C标记衣霉素进行的反相关NMR实验(异核单量子相干(HSQC))表明,独特的衣霉素11碳二醛糖主链源自尿苷衍生的5碳呋喃糖前体和UDP-D-N-乙酰葡糖胺衍生的6碳N-乙酰氨基吡喃糖前体。(13)C等量掺入衣霉素的α-1"和β-11'异头碳,支持通过6碳代谢直接生物合成。这也表明衣霉素基序和α-1"-连接的GlcNAc残基均源自UDP-GlcNAc的同一代谢池,没有明显的差异代谢加工。因此,首次提出了衣霉素的生物合成途径:首先分别通过尿苷-5'-醛和UDP-4-酮-6-烯-N-乙酰己糖胺,由尿苷和UDP-GlcNAc形成11碳衣霉素糖基序,随后形成异头到异头的α,β-1",11'-糖苷键。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验