Suppr超能文献

鉴定和表征嘧啶核苷抗生素生物合成中的酶。

Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics.

机构信息

Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.

Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Germany.

出版信息

Nat Prod Rep. 2021 Jul 21;38(7):1362-1407. doi: 10.1039/d0np00064g.

Abstract

Covering: up to September 2020 Hundreds of nucleoside-based natural products have been isolated from various microorganisms, several of which have been utilized in agriculture as pesticides and herbicides, in medicine as therapeutics for cancer and infectious disease, and as molecular probes to study biological processes. Natural products consisting of structural modifications of each of the canonical nucleosides have been discovered, ranging from simple modifications such as single-step alkylations or acylations to highly elaborate modifications that dramatically alter the nucleoside scaffold and require multiple enzyme-catalyzed reactions. A vast amount of genomic information has been uncovered the past two decades, which has subsequently allowed the first opportunity to interrogate the chemically intriguing enzymatic transformations for the latter type of modifications. This review highlights (i) the discovery and potential applications of structurally complex pyrimidine nucleoside antibiotics for which genetic information is known, (ii) the established reactions that convert the canonical pyrimidine into a new nucleoside scaffold, and (iii) the important tailoring reactions that impart further structural complexity to these molecules.

摘要

涵盖

截至 2020 年 9 月,已从各种微生物中分离出数百种基于核苷的天然产物,其中一些已被用作农业中的杀虫剂和除草剂,医学中的癌症和传染病治疗药物,以及研究生物过程的分子探针。已经发现了由每个规范核苷的结构修饰组成的天然产物,范围从简单的修饰(如单步烷基化或酰化)到高度复杂的修饰,这些修饰极大地改变了核苷支架并需要多个酶催化反应。在过去的二十年中,已经发现了大量的基因组信息,这随后为研究后一种类型的修饰提供了首次机会,以探究化学上有趣的酶促转化。这篇综述重点介绍了:(i) 具有已知遗传信息的结构复杂的嘧啶核苷抗生素的发现和潜在应用;(ii) 将规范嘧啶转化为新核苷支架的已建立反应;以及 (iii) 赋予这些分子进一步结构复杂性的重要修饰反应。

相似文献

2
Recent advances in the biosynthesis of nucleoside antibiotics.
J Antibiot (Tokyo). 2019 Dec;72(12):913-923. doi: 10.1038/s41429-019-0236-2. Epub 2019 Sep 25.
3
Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.
Trends Microbiol. 2015 Feb;23(2):110-9. doi: 10.1016/j.tim.2014.10.007. Epub 2014 Nov 13.
4
Nine enzymes are required for assembly of the pacidamycin group of peptidyl nucleoside antibiotics.
J Am Chem Soc. 2011 Apr 13;133(14):5240-3. doi: 10.1021/ja2011109. Epub 2011 Mar 18.
5
Cryptic phosphorylation in nucleoside natural product biosynthesis.
Nat Chem Biol. 2021 Feb;17(2):213-221. doi: 10.1038/s41589-020-00656-8. Epub 2020 Nov 30.
6
Biosynthesis and Genome Mining Potentials of Nucleoside Natural Products.
Chembiochem. 2023 Sep 1;24(17):e202300342. doi: 10.1002/cbic.202300342. Epub 2023 Jul 26.
7
Chemical logic and enzymatic machinery for biological assembly of peptidyl nucleoside antibiotics.
ACS Chem Biol. 2011 Oct 21;6(10):1000-7. doi: 10.1021/cb200284p. Epub 2011 Aug 25.
8
Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes.
J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):401-17. doi: 10.1007/s10295-015-1636-3. Epub 2015 Jul 8.
9
Nature's combinatorial biosynthesis and recently engineered production of nucleoside antibiotics in Streptomyces.
World J Microbiol Biotechnol. 2017 Apr;33(4):66. doi: 10.1007/s11274-017-2233-6. Epub 2017 Mar 4.
10
Dissecting the Nucleoside Antibiotics as Universal Translation Inhibitors.
Acc Chem Res. 2021 Jul 6;54(13):2798-2811. doi: 10.1021/acs.accounts.1c00221. Epub 2021 Jun 21.

引用本文的文献

1
Unusual O-H Activation-Initiated C-C Bond Cleavage Reaction by a Nonheme Fe Enzyme in Antifungal Nucleoside Biosynthesis.
J Am Chem Soc. 2025 Aug 20;147(33):30163-30177. doi: 10.1021/jacs.5c08400. Epub 2025 Aug 11.
2
Matrix stiffness-driven cancer progression and the targeted therapeutic strategy.
Mechanobiol Med. 2023 Aug 3;1(2):100013. doi: 10.1016/j.mbm.2023.100013. eCollection 2023 Dec.
3
The TetR-like regulator Sco4385 and Crp-like regulator Sco3571 modulate heterologous production of antibiotics in M512.
Appl Environ Microbiol. 2025 May 21;91(5):e0231524. doi: 10.1128/aem.02315-24. Epub 2025 Apr 4.
4
Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology.
Nat Prod Rep. 2024 Jun 19;41(6):873-884. doi: 10.1039/d3np00051f.
5
Biosynthesis and Genome Mining Potentials of Nucleoside Natural Products.
Chembiochem. 2023 Sep 1;24(17):e202300342. doi: 10.1002/cbic.202300342. Epub 2023 Jul 26.
6
-Adenosylmethionine: more than just a methyl donor.
Nat Prod Rep. 2023 Sep 20;40(9):1521-1549. doi: 10.1039/d2np00086e.
8
Origin of the 3-methylglutaryl moiety in caprazamycin biosynthesis.
Microb Cell Fact. 2022 Nov 5;21(1):232. doi: 10.1186/s12934-022-01955-6.
9
Recombineering using RecET-like recombinases from Xenorhabdus and its application in mining of natural products.
Appl Microbiol Biotechnol. 2022 Dec;106(23):7857-7866. doi: 10.1007/s00253-022-12258-6. Epub 2022 Nov 3.
10
Uncovering Research Trends of Phycobiliproteins Using Bibliometric Approach.
Plants (Basel). 2021 Nov 1;10(11):2358. doi: 10.3390/plants10112358.

本文引用的文献

2
Pyridoxal-5'-phosphate-dependent alkyl transfer in nucleoside antibiotic biosynthesis.
Nat Chem Biol. 2020 Aug;16(8):904-911. doi: 10.1038/s41589-020-0548-3. Epub 2020 Jun 1.
3
Structures of Bacterial MraY and Human GPT Provide Insights into Rational Antibiotic Design.
J Mol Biol. 2020 Aug 21;432(18):4946-4963. doi: 10.1016/j.jmb.2020.03.017. Epub 2020 Mar 19.
4
Emergence of oxygen- and pyridoxal phosphate-dependent reactions.
FEBS J. 2020 Apr;287(7):1403-1428. doi: 10.1111/febs.15277. Epub 2020 Mar 25.
5
Identification of the Enzymes Mediating the Maturation of the Seryl-tRNA Synthetase Inhibitor SB-217452 during the Biosynthesis of Albomycins.
Angew Chem Int Ed Engl. 2020 Feb 24;59(9):3558-3562. doi: 10.1002/anie.201915275. Epub 2020 Jan 29.
6
Muraminomicins, novel ester derivatives: in vitro and in vivo antistaphylococcal activity.
J Antibiot (Tokyo). 2019 Dec;72(12):956-969. doi: 10.1038/s41429-019-0235-3. Epub 2019 Sep 27.
7
Pyrimidine Nucleosides from sp. SSA28.
J Nat Prod. 2019 Sep 27;82(9):2509-2516. doi: 10.1021/acs.jnatprod.9b00260. Epub 2019 Aug 22.
8
Identification of Novel α-Pyrones from Serving as Sulfate Shuttles.
ACS Chem Biol. 2019 Sep 20;14(9):1972-1980. doi: 10.1021/acschembio.9b00455. Epub 2019 Aug 27.
10
Chemical logic of MraY inhibition by antibacterial nucleoside natural products.
Nat Commun. 2019 Jul 2;10(1):2917. doi: 10.1038/s41467-019-10957-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验