Ryu William S, Samuel Aravinthan D T
Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
J Neurosci. 2002 Jul 1;22(13):5727-33. doi: 10.1523/JNEUROSCI.22-13-05727.2002.
In a spatial thermal gradient, Caenorhabditis elegans migrates toward and then isothermally tracks near its cultivation temperature. A current model for thermotactic behavior involves a thermophilic drive (involving the neurons AFD and AIY) and cryophilic drive (involving the neuron AIZ) that balance at the cultivation temperature. Here, we analyze the movements of individual worms responding to defined thermal gradients. We found evidence for a mechanism for migration down thermal gradients that is active at temperatures above the cultivation temperature, and a mechanism for isothermal tracking that is active near the cultivation temperature. However, we found no evidence for a mechanism for migration up thermal gradients at temperatures below the cultivation temperature that might have supported the model of opposing drives. The mechanisms for migration down gradients and isothermal tracking control the worm's movements in different manners. Migration down gradients works by shortening (lengthening) the duration of forward movement in response to positive (negative) temperature changes. Isothermal tracking works by orienting persistent forward movement to offset temperature changes. We believe preference for the cultivation temperature is not at the balance between two drives. Instead, the worm activates the mechanism for isothermal tracking near the cultivation temperature and inactivates the mechanism for migration down gradients near or below the cultivation temperature. Inactivation of the mechanism for migration down gradients near or below the cultivation temperature requires the neurons AFD and AIY.
在空间热梯度中,秀丽隐杆线虫会朝着其培养温度移动,然后等温追踪该温度。当前的趋温行为模型涉及一个嗜热驱动力(涉及神经元AFD和AIY)和一个嗜冷驱动力(涉及神经元AIZ),它们在培养温度下达到平衡。在此,我们分析了单个线虫对特定热梯度的反应运动。我们发现了一种在高于培养温度时起作用的沿热梯度向下迁移的机制,以及一种在接近培养温度时起作用的等温追踪机制的证据。然而,我们没有发现存在一种在低于培养温度时沿热梯度向上迁移的机制的证据,而这种机制可能支持相反驱动力的模型。沿梯度向下迁移和等温追踪的机制以不同方式控制线虫的运动。沿梯度向下迁移是通过缩短(延长)正向运动的持续时间来响应正(负)温度变化。等温追踪是通过使持续的正向运动定向来抵消温度变化。我们认为对培养温度的偏好并非在于两种驱动力之间的平衡。相反,线虫在接近培养温度时激活等温追踪机制,而在接近或低于培养温度时使沿梯度向下迁移的机制失活。在接近或低于培养温度时使沿梯度向下迁移的机制失活需要神经元AFD和AIY。