Suppr超能文献

非极性非神经元动物的趋热性。

Thermotaxis in an apolar, non-neuronal animal.

机构信息

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

Department of Mechanical engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

J R Soc Interface. 2023 Sep;20(206):20230279. doi: 10.1098/rsif.2023.0279. Epub 2023 Sep 13.

Abstract

Neuronal circuits are hallmarks of complex decision-making processes in the animal world. How animals without neurons process information and respond to environmental cues promises a new window into studying precursors of neuronal control and origin of the nervous system as we know it today. Robust decision making in animals, such as in chemotaxis or thermotaxis, often requires internal symmetry breaking (such as anterior-posterior (AP) axis) provided naturally by a given body plan of an animal. Here we report the discovery of robust thermotaxis behaviour in , an early-divergent, enigmatic animal with no anterior-posterior symmetry breaking (apolar) and no known neurons or muscles. We present a quantitative and robust behavioural response assay in , which presents an apolar flat geometry. By exposing to a thermal gradient under a long-term imaging set-up, we observe robust thermotaxis that occurs over timescale of hours, independent of any circadian rhythms. We quantify that can detect thermal gradients of at least 0.1°C cm. Positive thermotaxis is observed for a range of baseline temperatures from 17°C to 22.5°C, and distributions of momentary speeds for both thermotaxis and control conditions are well described by single exponential fits. Interestingly, the organism does not maintain a fixed orientation while performing thermotaxis. Using natural diversity in size of adult organisms (100 µm to a few millimetres), we find no apparent size-dependence in thermotaxis behaviour across an order of magnitude of organism size. Several transient receptor potential (TRP) family homologues have been previously reported to be conserved in metazoans, including in . We discover naringenin, a known TRPM3 antagonist, inhibits thermotaxis in . The discovery of robust thermotaxis in provides a tractable handle to interrogate information processing in a brainless animal. Understanding how divergent marine animals process thermal cues is also critical due to rapid temperature rise in our oceans.

摘要

神经元回路是动物界进行复杂决策过程的标志。没有神经元的动物如何处理信息并对环境线索做出反应,这有望为研究神经元控制的前身和我们今天所知道的神经系统的起源提供一个新的窗口。动物的稳健决策,如趋化性或趋热性,通常需要由动物给定的身体结构自然提供的内部对称破缺(例如前-后(AP)轴)。在这里,我们报告了在一种早期分化的神秘动物 中发现了稳健的趋热性行为,该动物没有前-后对称破缺(无极性),也没有已知的神经元或肌肉。我们提出了一种在 中进行的定量和稳健的行为反应测定方法,该方法呈现出无极性的平面几何形状。通过将 暴露在长期成像设置下的热梯度中,我们观察到稳健的趋热性,其发生在数小时的时间尺度上,与任何昼夜节律无关。我们量化了 可以检测到至少 0.1°C cm 的热梯度。在从 17°C 到 22.5°C 的一系列基线温度下观察到正趋热性,并且趋热性和对照条件的瞬时速度分布都可以很好地用单指数拟合来描述。有趣的是,该生物体在进行趋热时不会保持固定的方向。使用成年生物体大小的自然多样性(100 µm 到几毫米),我们发现跨生物体大小的一个数量级的趋热行为没有明显的大小依赖性。先前已经报道了几种瞬时受体电位(TRP)家族同源物在后生动物中保守存在,包括在 中。我们发现柚皮素是一种已知的 TRPM3 拮抗剂,它可以抑制 中的趋热性。在无脑中发现稳健的趋热性为研究无脑动物的信息处理提供了一个易于处理的方法。由于我们海洋中的温度迅速上升,了解不同的海洋动物如何处理热线索也至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32a/10498350/e7fa5f0e957e/rsif20230279f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验