Fehr Marcus, Frommer Wolf B, Lalonde Sylvie
Zentrum für Molekularbiologie der Pflanzen, Plant Physiology, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany.
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9846-51. doi: 10.1073/pnas.142089199. Epub 2002 Jul 3.
Compartmentation of metabolic reactions and thus transport within and between cells can be understood only if we know subcellular distribution based on nondestructive dynamic monitoring. Currently, methods are not available for in vivo metabolite imaging at cellular or subcellular levels. Limited information derives from methods requiring fixation or fractionation of tissue (1, 2). We thus developed a flexible strategy for designing protein-based nanosensors for a wide spectrum of solutes, allowing analysis of changes in solute concentration in living cells. We made use of bacterial periplasmic binding proteins (PBPs), where we show that, on binding of the substrate, PBPs transform their hinge-bend movement into increased fluorescence resonance energy transfer (FRET) between two coupled green fluorescent proteins. By using the maltose-binding protein as a prototype, nanosensors were constructed allowing in vitro determination of FRET changes in a concentration-dependent fashion. For physiological applications, mutants with different binding affinities were generated, allowing dynamic in vivo imaging of the increase in cytosolic maltose concentration in single yeast cells. Control sensors allow the exclusion of the effect from other cellular or environmental parameters on ratio imaging. Thus the myriad of PBPs recognizing a wide spectrum of different substrates is suitable for FRET-based in vivo detection, providing numerous scientific, medical, and environmental applications.
只有当我们基于无损动态监测了解亚细胞分布时,才能理解代谢反应的区室化以及细胞内和细胞间的转运。目前,尚无用于细胞或亚细胞水平体内代谢物成像的方法。有限的信息来自需要对组织进行固定或分级分离的方法(1,2)。因此,我们开发了一种灵活的策略,用于设计针对多种溶质的基于蛋白质的纳米传感器,从而能够分析活细胞中溶质浓度的变化。我们利用了细菌周质结合蛋白(PBPs),我们发现,在底物结合时,PBPs会将其铰链弯曲运动转化为两个偶联的绿色荧光蛋白之间增强的荧光共振能量转移(FRET)。以麦芽糖结合蛋白为原型,构建了纳米传感器,能够以浓度依赖的方式在体外测定FRET变化。对于生理应用,生成了具有不同结合亲和力的突变体,从而能够对单个酵母细胞中胞质麦芽糖浓度的增加进行动态体内成像。对照传感器可排除其他细胞或环境参数对比率成像的影响。因此,众多识别多种不同底物的PBPs适用于基于FRET的体内检测,具有众多科学、医学和环境应用。