Shalman E, Rosenfeld M, Dgany E, Einav S
Faculty of Engineering, Tel-Aviv University, 69978 Tel Aviv, Israel.
Comput Biol Med. 2002 Sep;32(5):329-44. doi: 10.1016/s0010-4825(01)00033-6.
The severity of coronary arterial stenosis is usually measured by either simple geometrical parameters, such as percent diameter stenosis, or hemodynamically based parameters, such as the fractional flow reserve (FFR) or coronary flow reserve (CFR). The present study aimed to establish a relationship between actual hemodynamic conditions and the parameters that define stenosis severity in the clinical setting. We used a computational model of the blood flow in a vessel with a blunt stenosis and an autoregulated vascular bed to simulate a stenosed blood vessel. A key point in creating realistic simulations is to properly model arterial autoregulation. A constant flow regulation mechanism resulted in CFR and FFR values that were within the physiological range, while a constant wall-shear stress model yielded unrealistic values. The simulation tools developed in the present study may be useful in the clinical assessment of single and multiple stenoses by means of minimally invasive methods.
冠状动脉狭窄的严重程度通常通过简单的几何参数(如直径狭窄百分比)或基于血流动力学的参数(如血流储备分数[FFR]或冠状动脉血流储备[CFR])来衡量。本研究旨在建立临床环境中实际血流动力学状况与定义狭窄严重程度的参数之间的关系。我们使用了一个具有钝性狭窄和自动调节血管床的血管内血流计算模型来模拟狭窄血管。创建逼真模拟的一个关键点是正确模拟动脉自动调节。恒定流量调节机制产生的CFR和FFR值在生理范围内,而恒定壁面剪应力模型产生的是不现实的值。本研究开发的模拟工具可能有助于通过微创方法对单处和多处狭窄进行临床评估。