Johnson Glenn R, Jain Rakesh K, Spain Jim C
Air Force Research Laboratory, U.S. Air Force, Tyndall Air Force Base, Florida 32403, USA.
J Bacteriol. 2002 Aug;184(15):4219-32. doi: 10.1128/JB.184.15.4219-4232.2002.
The degradation of synthetic compounds requires bacteria to recruit and adapt enzymes from pathways for naturally occurring compounds. Previous work defined the steps in 2,4-dinitrotoluene (2,4-DNT) metabolism through the ring fission reaction. The results presented here characterize subsequent steps in the pathway that yield the central metabolic intermediates pyruvate and propionyl coenzyme A (CoA). The genes encoding the degradative pathway were identified within a 27-kb region of DNA cloned from Burkholderia cepacia R34, a strain that grows using 2,4-DNT as a sole carbon, energy, and nitrogen source. Genes for the lower pathway in 2,4-DNT degradation were found downstream from dntD, the gene encoding the extradiol ring fission enzyme of the pathway. The region includes genes encoding a CoA-dependent methylmalonate semialdehyde dehydrogenase (dntE), a putative NADH-dependent dehydrogenase (ORF13), and a bifunctional isomerase/hydrolase (dntG). Results from analysis of the gene sequence, reverse transcriptase PCR, and enzyme assays indicated that dntD dntE ORF13 dntG composes an operon that encodes the lower pathway. Additional genes that were uncovered encode the 2,4-DNT dioxygenase (dntAaAbAcAd), methylnitrocatechol monooxygenase (dntB), a putative LysR-type transcriptional (ORF12) regulator, an intradiol ring cleavage enzyme (ORF3), a maleylacetate reductase (ORF10), a complete ABC transport complex (ORF5 to ORF8), a putative methyl-accepting chemoreceptor protein (ORF11), and remnants from two transposable elements. Some of the additional gene products might play as-yet-undefined roles in 2,4-DNT degradation; others appear to remain from recruitment of the neighboring genes. The presence of the transposon remnants and vestigial genes suggests that the pathway for 2,4-DNT degradation evolved relatively recently because the extraneous elements have not been eliminated from the region.
合成化合物的降解需要细菌从天然存在化合物的途径中募集和适配酶。先前的研究确定了2,4 -二硝基甲苯(2,4 - DNT)通过环裂解反应进行代谢的步骤。本文展示的结果描述了该途径中产生中心代谢中间体丙酮酸和丙酰辅酶A(CoA)的后续步骤。编码降解途径的基因在从洋葱伯克霍尔德菌R34克隆的一段27 kb的DNA区域内被鉴定出来,该菌株以2,4 - DNT作为唯一的碳、能量和氮源生长。2,4 - DNT降解下游途径的基因位于dntD的下游,dntD是该途径中编码双加氧环裂解酶的基因。该区域包括编码依赖CoA的甲基丙二酸半醛脱氢酶(dntE)、一种假定的依赖NADH的脱氢酶(开放阅读框13,ORF13)和一种双功能异构酶/水解酶(dntG)的基因。基因序列分析、逆转录酶PCR和酶活性测定的结果表明,dntD、dntE、ORF13、dntG组成了一个编码下游途径的操纵子。另外发现的基因编码2,4 - DNT双加氧酶(dntAaAbAcAd)、甲基硝基邻苯二酚单加氧酶(dntB)、一种假定的LysR型转录(ORF12)调节因子、一种内加氧环裂解酶(ORF3)、一种马来酰乙酸还原酶(ORF10)、一个完整的ABC转运复合体(ORF5至ORF8)、一种假定接受甲基的化学感受蛋白(ORF11)以及两个转座元件的残余部分。一些额外的基因产物可能在2,4 - DNT降解中发挥尚未明确的作用;其他一些似乎是从邻近基因的募集过程中保留下来的。转座子残余和残余基因的存在表明,2,4 - DNT降解途径是相对较新进化而来的,因为该区域尚未消除外来元件。