Suppr超能文献

2,4-二硝基甲苯途径的起源

Origins of the 2,4-dinitrotoluene pathway.

作者信息

Johnson Glenn R, Jain Rakesh K, Spain Jim C

机构信息

Air Force Research Laboratory, U.S. Air Force, Tyndall Air Force Base, Florida 32403, USA.

出版信息

J Bacteriol. 2002 Aug;184(15):4219-32. doi: 10.1128/JB.184.15.4219-4232.2002.

Abstract

The degradation of synthetic compounds requires bacteria to recruit and adapt enzymes from pathways for naturally occurring compounds. Previous work defined the steps in 2,4-dinitrotoluene (2,4-DNT) metabolism through the ring fission reaction. The results presented here characterize subsequent steps in the pathway that yield the central metabolic intermediates pyruvate and propionyl coenzyme A (CoA). The genes encoding the degradative pathway were identified within a 27-kb region of DNA cloned from Burkholderia cepacia R34, a strain that grows using 2,4-DNT as a sole carbon, energy, and nitrogen source. Genes for the lower pathway in 2,4-DNT degradation were found downstream from dntD, the gene encoding the extradiol ring fission enzyme of the pathway. The region includes genes encoding a CoA-dependent methylmalonate semialdehyde dehydrogenase (dntE), a putative NADH-dependent dehydrogenase (ORF13), and a bifunctional isomerase/hydrolase (dntG). Results from analysis of the gene sequence, reverse transcriptase PCR, and enzyme assays indicated that dntD dntE ORF13 dntG composes an operon that encodes the lower pathway. Additional genes that were uncovered encode the 2,4-DNT dioxygenase (dntAaAbAcAd), methylnitrocatechol monooxygenase (dntB), a putative LysR-type transcriptional (ORF12) regulator, an intradiol ring cleavage enzyme (ORF3), a maleylacetate reductase (ORF10), a complete ABC transport complex (ORF5 to ORF8), a putative methyl-accepting chemoreceptor protein (ORF11), and remnants from two transposable elements. Some of the additional gene products might play as-yet-undefined roles in 2,4-DNT degradation; others appear to remain from recruitment of the neighboring genes. The presence of the transposon remnants and vestigial genes suggests that the pathway for 2,4-DNT degradation evolved relatively recently because the extraneous elements have not been eliminated from the region.

摘要

合成化合物的降解需要细菌从天然存在化合物的途径中募集和适配酶。先前的研究确定了2,4 -二硝基甲苯(2,4 - DNT)通过环裂解反应进行代谢的步骤。本文展示的结果描述了该途径中产生中心代谢中间体丙酮酸和丙酰辅酶A(CoA)的后续步骤。编码降解途径的基因在从洋葱伯克霍尔德菌R34克隆的一段27 kb的DNA区域内被鉴定出来,该菌株以2,4 - DNT作为唯一的碳、能量和氮源生长。2,4 - DNT降解下游途径的基因位于dntD的下游,dntD是该途径中编码双加氧环裂解酶的基因。该区域包括编码依赖CoA的甲基丙二酸半醛脱氢酶(dntE)、一种假定的依赖NADH的脱氢酶(开放阅读框13,ORF13)和一种双功能异构酶/水解酶(dntG)的基因。基因序列分析、逆转录酶PCR和酶活性测定的结果表明,dntD、dntE、ORF13、dntG组成了一个编码下游途径的操纵子。另外发现的基因编码2,4 - DNT双加氧酶(dntAaAbAcAd)、甲基硝基邻苯二酚单加氧酶(dntB)、一种假定的LysR型转录(ORF12)调节因子、一种内加氧环裂解酶(ORF3)、一种马来酰乙酸还原酶(ORF10)、一个完整的ABC转运复合体(ORF5至ORF8)、一种假定接受甲基的化学感受蛋白(ORF11)以及两个转座元件的残余部分。一些额外的基因产物可能在2,4 - DNT降解中发挥尚未明确的作用;其他一些似乎是从邻近基因的募集过程中保留下来的。转座子残余和残余基因的存在表明,2,4 - DNT降解途径是相对较新进化而来的,因为该区域尚未消除外来元件。

相似文献

1
Origins of the 2,4-dinitrotoluene pathway.
J Bacteriol. 2002 Aug;184(15):4219-32. doi: 10.1128/JB.184.15.4219-4232.2002.
3
Elucidation of the 4-hydroxyacetophenone catabolic pathway in Pseudomonas fluorescens ACB.
J Bacteriol. 2008 Aug;190(15):5190-8. doi: 10.1128/JB.01944-07. Epub 2008 May 23.
4
Cloning and characterization of Pseudomonas sp. strain DNT genes for 2,4-dinitrotoluene degradation.
J Bacteriol. 1993 Mar;175(6):1831-7. doi: 10.1128/jb.175.6.1831-1837.1993.
6
Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. strain DNT.
J Bacteriol. 1996 Oct;178(20):6019-24. doi: 10.1128/jb.178.20.6019-6024.1996.
7
Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene.
Appl Environ Microbiol. 2000 May;66(5):2139-47. doi: 10.1128/AEM.66.5.2139-2147.2000.
9
Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene.
Appl Microbiol Biotechnol. 2003 Aug;62(2-3):110-23. doi: 10.1007/s00253-003-1341-4. Epub 2003 May 15.

引用本文的文献

1
Semi-rational design of nitroarene dioxygenase for catalytic ability toward 2,4-dichloronitrobenzene.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0143623. doi: 10.1128/aem.01436-23. Epub 2024 May 6.
2
Creation of Environmentally Friendly Super "Dinitrotoluene Scavenger" Plants.
Adv Sci (Weinh). 2023 Oct;10(30):e2303785. doi: 10.1002/advs.202303785. Epub 2023 Sep 15.
3
Molecular Basis and Evolutionary Origin of 1-Nitronaphthalene Catabolism in sp. Strain JS3065.
Appl Environ Microbiol. 2023 Jan 31;89(1):e0172822. doi: 10.1128/aem.01728-22. Epub 2023 Jan 9.
4
A Recently Assembled Degradation Pathway for 2,3-Dichloronitrobenzene in sp. Strain JS3051.
mBio. 2021 Aug 31;12(4):e0223121. doi: 10.1128/mBio.02231-21. Epub 2021 Aug 24.
5
-associated bioengineered can enhance rhizoremediation of soil containing 2,4-dinitrotoluene.
3 Biotech. 2020 Sep;10(9):398. doi: 10.1007/s13205-020-02395-y. Epub 2020 Aug 19.
6
Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida.
Microb Biotechnol. 2020 Jul;13(4):997-1011. doi: 10.1111/1751-7915.13544. Epub 2020 Feb 16.
9
The Effect of Cellular Redox Status on the Evolvability of New Catabolic Pathways.
mBio. 2018 Oct 16;9(5):e01981-18. doi: 10.1128/mBio.01981-18.

本文引用的文献

1
Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765.
Appl Environ Microbiol. 2002 Feb;68(2):634-41. doi: 10.1128/AEM.68.2.634-641.2002.
2
The genome sequence of the facultative intracellular pathogen Brucella melitensis.
Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):443-8. doi: 10.1073/pnas.221575398. Epub 2001 Dec 26.
3
nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism.
J Bacteriol. 2001 Jan;183(2):700-8. doi: 10.1128/JB.183.2.700-708.2001.
4
Lateral gene transfer and the nature of bacterial innovation.
Nature. 2000 May 18;405(6784):299-304. doi: 10.1038/35012500.
6
Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene.
Appl Environ Microbiol. 2000 May;66(5):2139-47. doi: 10.1128/AEM.66.5.2139-2147.2000.
7
Bacteria are not what they eat: that is why they are so diverse.
J Bacteriol. 2000 Jan;182(2):257-63. doi: 10.1128/JB.182.2.257-263.2000.
8
Crystal structure and mechanism of a carbon-carbon bond hydrolase.
Structure. 1999 Sep 15;7(9):1023-33. doi: 10.1016/s0969-2126(99)80170-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验