Department of Molecular Biology and Genetics, Faculty of Sciences, Gebze Technical University, Kocaeli, Turkey.
Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago de Chile, Chile.
mBio. 2018 Aug 28;9(4):e01512-18. doi: 10.1128/mBio.01512-18.
During evolution of biodegradation pathways for xenobiotic compounds involving Rieske nonheme iron oxygenases, the transition toward novel substrates is frequently associated with faulty reactions. Such events release reactive oxygen species (ROS), which are endowed with high mutagenic potential. In this study, we evaluated how the operation of the background metabolic network by an environmental bacterium may either foster or curtail the still-evolving pathway for 2,4-dinitrotoluene (2,4-DNT) catabolism. To this end, the genetically tractable strain EM173 was implanted with the whole genetic complement necessary for the complete biodegradation of 2,4-DNT (recruited from the environmental isolate sp. R34). By using reporter technology and direct measurements of ROS formation, we observed that the engineered strain experienced oxidative stress when catabolizing the nitroaromatic substrate. However, the formation of ROS was neither translated into significant activation of the SOS response to DNA damage nor did it result in a mutagenic regime (unlike what has been observed in sp. R34, the original host of the pathway). To inspect whether the tolerance of to oxidative challenges could be traced to its characteristic reductive redox regime, we artificially altered the NAD(P)H pool by means of a water-forming, NADH-specific oxidase. Under the resulting low-NAD(P)H status, catabolism of 2,4-DNT triggered a conspicuous mutagenic and genomic diversification scenario. These results indicate that the background biochemical network of environmental bacteria ultimately determines the evolvability of metabolic pathways. Moreover, the data explain the efficacy of some bacteria (e.g., pseudomonads) to host and evolve with new catabolic routes. Some environmental bacteria evolve with new capacities for the aerobic biodegradation of chemical pollutants by adapting preexisting redox reactions to novel compounds. The process typically starts by cooption of enzymes from an available route to act on the chemical structure of the substrate-to-be. The critical bottleneck is generally the first biochemical step, and most of the selective pressure operates on reshaping the initial reaction. The interim uncoupling of the novel substrate to preexisting Rieske nonheme iron oxygenases usually results in formation of highly mutagenic ROS. In this work, we demonstrate that the background metabolic regime of the bacterium that hosts an evolving catabolic pathway (e.g., biodegradation of the xenobiotic 2,4-DNT) determines whether the cells either adopt a genetic diversification regime or a robust ROS-tolerant status. Furthermore, our results offer new perspectives to the rational design of efficient whole-cell biocatalysts, which are pursued in contemporary metabolic engineering.
在涉及 Rieske 非血红素铁加氧酶的外来化合物生物降解途径的进化过程中,向新底物的转变通常与错误的反应有关。这些事件会释放具有高诱变潜力的活性氧物种 (ROS)。在这项研究中,我们评估了环境细菌的背景代谢网络的运作方式如何促进或限制 2,4-二硝基甲苯 (2,4-DNT) 代谢的仍在进化的途径。为此,遗传上可操作的菌株 EM173 被植入了完全降解 2,4-DNT 所需的完整遗传成分(从环境分离株 sp. R34 中招募)。通过使用报告基因技术和 ROS 形成的直接测量,我们观察到当工程菌代谢硝基芳烃底物时,它经历了氧化应激。然而,ROS 的形成既没有转化为对 DNA 损伤的 SOS 反应的显著激活,也没有导致诱变状态(与原始途径宿主 sp. R34 不同)。为了检查 对氧化挑战的耐受性是否可以追溯到其特征还原氧化还原状态,我们通过形成水的 NADH 特异性氧化酶人为地改变了 NAD(P)H 池。在 NAD(P)H 状态较低的情况下,2,4-DNT 的代谢会引发明显的诱变和基因组多样化情况。这些结果表明,环境细菌的背景生化网络最终决定了代谢途径的可进化性。此外,这些数据解释了一些细菌(例如假单胞菌)能够容纳和进化新的代谢途径的原因。一些环境细菌通过适应新化合物来进化出对化学污染物有氧生物降解的新能力。该过程通常从利用现有途径的酶来作用于待处理的化学结构开始。关键的瓶颈通常是第一步生化反应,大多数选择压力都作用于重塑初始反应。新底物与现有 Rieske 非血红素铁加氧酶的中间解偶联通常会导致具有高度诱变潜力的 ROS 的形成。在这项工作中,我们证明了宿主进化代谢途径的细菌的背景代谢状态(例如,外来化合物 2,4-DNT 的生物降解)决定了细胞是采用遗传多样化状态还是强大的 ROS 耐受状态。此外,我们的结果为当代代谢工程中追求的高效全细胞生物催化剂的合理设计提供了新的视角。