Suppr超能文献

静态多指抓握中的力与扭矩产生:生物力学与控制。I. 生物力学。

Force and torque production in static multifinger prehension: biomechanics and control. I. Biomechanics.

作者信息

Zatsiorsky Vladimir M, Gregory Robert W, Latash Mark L

机构信息

Department of Kinesiology, 39 Rec. Bldg, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Biol Cybern. 2002 Jul;87(1):50-7. doi: 10.1007/s00422-002-0321-6.

Abstract

We studied the coordinated action of fingers during static tasks involving exertion of force and torque on a handheld object. Subjects were asked to keep a handle with an attachment that allowed for independent change of the suspended load (0.5-2.0 kg) and external torque (0.375-1.5 N m) in a vertical position while applying minimal effort. Normal and shear forces were measured from the thumb; normal forces only were measured from the four fingers. EXPERIMENTAL RESULTS: (1) the thumb shear force increased during supination efforts and decreased during pronation efforts; (2) the total moment of the normal finger forces only counterbalanced approximately 50% of the external torque, hence shear forces accounted for approximately one-half of the total torque exerted on the object; (3) the total normal force increased with external torque, and the total force magnitude did not depend on the torque direction; (4) the forces of the 'peripheral' (index and little) fingers depended mainly on the torque while the forces exerted by the 'central' (middle and ring) fingers depended both on the load and torque; (5) there was a monotonic relationship between the mechanical advantage of a finger (i.e., its moment arm during torque production) and the force produced by that finger; and (6) antagonist finger moments acting opposite to the intended direction of the total moment were always observed - at low torques the antagonist moments were as high as 40-60% of the agonist moments. MODELING: A three-zone model of coordinated finger action is suggested. In the first zone of load/torque combinations, activation of antagonist fingers (i.e., fingers that generate antagonist moments) is necessary to prevent slipping. In the second zone, the activity of agonist fingers is sufficient for preventing slips. In the third zone, the performer has freedom to choose between either activating the antagonist fingers or redistributing activities amongst the agonist fingers. The findings of this study provide the foundation for neural network and optimization modeling described in the companion paper [Zatsiorsky et al. (2002) Biol Cybern DOI 10.1007/s00422-002-0320-7].

摘要

我们研究了在涉及对手持物体施加力和扭矩的静态任务中手指的协同作用。受试者被要求握住一个带有附件的手柄,该附件允许独立改变悬挂负载(0.5 - 2.0千克)和外部扭矩(0.375 - 1.5牛·米),并使其处于垂直位置,同时施加最小的力。测量了拇指的法向力和剪切力;仅测量了其他四指的法向力。实验结果:(1)旋后用力时拇指剪切力增加,旋前用力时拇指剪切力减小;(2)仅正常手指力的总力矩仅能平衡约50%的外部扭矩,因此剪切力约占施加在物体上总扭矩的一半;(3)总法向力随外部扭矩增加,且总力大小不取决于扭矩方向;(4)“周边”(食指和小指)手指的力主要取决于扭矩,而“中间”(中指和无名指)手指施加的力既取决于负载又取决于扭矩;(5)手指的机械优势(即其在产生扭矩时的力臂)与该手指产生的力之间存在单调关系;(6)总是观察到与总力矩预期方向相反的拮抗手指力矩——在低扭矩下,拮抗力矩高达主动力矩的40 - 60%。建模:提出了一个手指协同作用的三区模型。在负载/扭矩组合的第一区,激活拮抗手指(即产生拮抗力矩的手指)对于防止滑动是必要的。在第二区,主动手指的活动足以防止滑动。在第三区,执行者可以自由选择激活拮抗手指或在主动手指之间重新分配活动。本研究的结果为配套论文[扎齐奥尔斯基等人(2002年)《生物控制论》DOI 10.1007/s00422 - 002 - 0320 - 7]中描述的神经网络和优化建模奠定了基础。

相似文献

3
Digit force adjustments during finger addition/removal in multi-digit prehension.
Exp Brain Res. 2008 Aug;189(3):345-59. doi: 10.1007/s00221-008-1430-9. Epub 2008 Jun 14.
4
Prehension synergies during smooth changes of the external torque.
Exp Brain Res. 2011 Sep;213(4):493-506. doi: 10.1007/s00221-011-2799-4. Epub 2011 Jul 28.
5
Effects of grasping force magnitude on the coordination of digit forces in multi-finger prehension.
Exp Brain Res. 2009 Mar;194(1):115-29. doi: 10.1007/s00221-008-1675-3. Epub 2009 Jan 13.
6
Prehension synergies in three dimensions.
J Neurophysiol. 2005 Feb;93(2):766-76. doi: 10.1152/jn.00764.2004. Epub 2004 Sep 29.
7
Static prehension of a horizontally oriented object in three dimensions.
Exp Brain Res. 2012 Jan;216(2):249-61. doi: 10.1007/s00221-011-2923-5. Epub 2011 Nov 10.
8
Finger force vectors in multi-finger prehension.
J Biomech. 2003 Nov;36(11):1745-9. doi: 10.1016/s0021-9290(03)00062-9.
9
Prehension stability: experiments with expanding and contracting handle.
J Neurophysiol. 2006 Apr;95(4):2513-29. doi: 10.1152/jn.00839.2005. Epub 2005 Nov 30.
10
Prehension synergies: effects of object geometry and prescribed torques.
Exp Brain Res. 2003 Jan;148(1):77-87. doi: 10.1007/s00221-002-1278-3. Epub 2002 Nov 12.

引用本文的文献

1
Exo Supportive Devices: Summary of Technical Aspects.
Bioengineering (Basel). 2023 Nov 17;10(11):1328. doi: 10.3390/bioengineering10111328.
2
Evidence to support the mechanical advantage hypothesis of grasping at low force levels.
Sci Rep. 2022 Dec 2;12(1):20834. doi: 10.1038/s41598-022-25351-7.
3
Support for mechanical advantage hypothesis of grasping cannot be explained only by task mechanics.
Sci Rep. 2022 Jun 17;12(1):10242. doi: 10.1038/s41598-022-14014-2.
4
Unintentional force drifts across the human fingers: implications for the neural control of finger tasks.
Exp Brain Res. 2022 Mar;240(3):751-761. doi: 10.1007/s00221-021-06287-2. Epub 2022 Jan 13.
7
Stability of hand force production. II. Ascending and descending synergies.
J Neurophysiol. 2018 Sep 1;120(3):1045-1060. doi: 10.1152/jn.00045.2018. Epub 2018 Jun 6.
8
Center of pressure based segment inertial parameters validation.
PLoS One. 2017 Jun 29;12(6):e0180011. doi: 10.1371/journal.pone.0180011. eCollection 2017.
9
Taxonomy based analysis of force exchanges during object grasping and manipulation.
PLoS One. 2017 May 31;12(5):e0178185. doi: 10.1371/journal.pone.0178185. eCollection 2017.
10
Multidigit force control during unconstrained grasping in response to object perturbations.
J Neurophysiol. 2017 May 1;117(5):2025-2036. doi: 10.1152/jn.00546.2016. Epub 2017 Feb 22.

本文引用的文献

1
Inter-digit co-ordination and object-digit interaction when holding an object with five digits.
Ergonomics. 2002 May 15;45(6):425-40. doi: 10.1080/00140130210129673.
2
Force synergies for multifingered grasping.
Exp Brain Res. 2000 Aug;133(4):457-67. doi: 10.1007/s002210000420.
3
Control of grasp stability during pronation and supination movements.
Exp Brain Res. 1999 Sep;128(1-2):20-30. doi: 10.1007/s002210050813.
4
Control of grip force when tilting objects: effect of curvature of grasped surfaces and applied tangential torque.
J Neurosci. 1998 Dec 15;18(24):10724-34. doi: 10.1523/JNEUROSCI.18-24-10724.1998.
6
Force sharing among fingers as a model of the redundancy problem.
Exp Brain Res. 1998 Apr;119(3):276-86. doi: 10.1007/s002210050343.
7
Tangential torque effects on the control of grip forces when holding objects with a precision grip.
J Neurophysiol. 1997 Sep;78(3):1619-30. doi: 10.1152/jn.1997.78.3.1619.
9
Coordination.
Am Psychol. 1990 Aug;45(8):938-53. doi: 10.1037//0003-066x.45.8.938.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验