文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

外骨骼辅助设备:技术方面总结

Exo Supportive Devices: Summary of Technical Aspects.

作者信息

André António Diogo, Martins Pedro

机构信息

Associated Laboratory of Energy, Transports and Aeronautics (LAETA), Biomechanic and Health Unity (UBS), Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4200-465 Porto, Portugal.

Faculty of Engineering, University of Porto (FEUP), 4200-465 Porto, Portugal.

出版信息

Bioengineering (Basel). 2023 Nov 17;10(11):1328. doi: 10.3390/bioengineering10111328.


DOI:10.3390/bioengineering10111328
PMID:38002452
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10669745/
Abstract

Human societies have been trying to mitigate the suffering of individuals with physical impairments, with a special effort in the last century. In the 1950s, a new concept arose, finding similarities between animal exoskeletons, and with the goal of medically aiding human movement (for rehabilitation applications). There have been several studies on using exosuits with this purpose in mind. So, the current review offers a critical perspective and a detailed analysis of the steps and key decisions involved in the conception of an exoskeleton. Choices such as design aspects, base materials (structure), actuators (force and motion), energy sources (actuation), and control systems will be discussed, pointing out their advantages and disadvantages. Moreover, examples of exosuits (full-body, upper-body, and lower-body devices) will be presented and described, including their use cases and outcomes. The future of exoskeletons as possible assisted movement solutions will be discussed-pointing to the best options for rehabilitation.

摘要

人类社会一直在努力减轻身体有缺陷者的痛苦,尤其是在上个世纪付出了特别的努力。20世纪50年代,一个新的概念出现了,人们发现动物外骨骼之间存在相似之处,并旨在从医学上辅助人类运动(用于康复应用)。已经有几项关于为此目的使用外骨骼套装的研究。因此,本综述提供了一个批判性的视角,并对设计外骨骼所涉及的步骤和关键决策进行了详细分析。将讨论诸如设计方面、基础材料(结构)、致动器(力和运动)、能源(驱动)和控制系统等选择,指出它们的优点和缺点。此外,还将展示和描述外骨骼套装(全身、上身和下身装置)的示例,包括它们的用例和效果。将讨论外骨骼作为可能的辅助运动解决方案的未来——指出康复的最佳选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/ef2da987a451/bioengineering-10-01328-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/f09f8cdcd806/bioengineering-10-01328-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/e32c4cf78872/bioengineering-10-01328-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/512270a20fe7/bioengineering-10-01328-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/1b66607dfc63/bioengineering-10-01328-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/0dc8dbcd5d65/bioengineering-10-01328-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/e4d420c62b64/bioengineering-10-01328-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/ef4023838b09/bioengineering-10-01328-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/6a17a515abe3/bioengineering-10-01328-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/11ba43d8cb1b/bioengineering-10-01328-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/ef2da987a451/bioengineering-10-01328-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/f09f8cdcd806/bioengineering-10-01328-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/e32c4cf78872/bioengineering-10-01328-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/512270a20fe7/bioengineering-10-01328-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/1b66607dfc63/bioengineering-10-01328-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/0dc8dbcd5d65/bioengineering-10-01328-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/e4d420c62b64/bioengineering-10-01328-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/ef4023838b09/bioengineering-10-01328-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/6a17a515abe3/bioengineering-10-01328-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/11ba43d8cb1b/bioengineering-10-01328-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed5/10669745/ef2da987a451/bioengineering-10-01328-g010.jpg

相似文献

[1]
Exo Supportive Devices: Summary of Technical Aspects.

Bioengineering (Basel). 2023-11-17

[2]
Special section on biomimetics of movement.

Bioinspir Biomim. 2011-12

[3]
Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review.

Sensors (Basel). 2022-10-24

[4]
Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.

Proc Inst Mech Eng H. 2021-12

[5]
Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.

J Med Eng Technol. 2016

[6]
Sensors and Actuation Technologies in Exoskeletons: A Review.

Sensors (Basel). 2022-1-24

[7]
Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.

IISE Trans Occup Ergon Hum Factors. 2021

[8]
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.

IEEE Trans Neural Syst Rehabil Eng. 2017-2

[9]
Human-exoskeleton control simulation, kinetic and kinematic modeling and parameters extraction.

MethodsX. 2019-8-23

[10]
Comparative study of actuation systems for portable upper limb exoskeletons.

Med Eng Phys. 2018-10

本文引用的文献

[1]
Effects of lower limb exoskeleton gait orthosis compared to mechanical gait orthosis on rehabilitation of patients with spinal cord injury: A systematic review and future perspectives.

Gait Posture. 2023-5

[2]
Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness.

J Neuroeng Rehabil. 2023-2-19

[3]
Robotic Home-Based Rehabilitation Systems Design: From a Literature Review to a Conceptual Framework for Community-Based Remote Therapy During COVID-19 Pandemic.

Front Robot AI. 2021-6-22

[4]
Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study.

Front Bioeng Biotechnol. 2021-4-9

[5]
Artificial Intelligence-Based Wearable Robotic Exoskeletons for Upper Limb Rehabilitation: A Review.

Sensors (Basel). 2021-3-18

[6]
PEDOT-Based Conducting Polymer Actuators.

Front Robot AI. 2019-11-19

[7]
A Kinematic Model of a Humanoid Lower Limb Exoskeleton with Hydraulic Actuators.

Sensors (Basel). 2020-10-27

[8]
Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance.

Sci Robot. 2020-3-25

[9]
Effect of footwear on intramuscular EMG activity of plantar flexor muscles in walking.

J Electromyogr Kinesiol. 2020-12

[10]
Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking.

J Neuroeng Rehabil. 2020-7-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索