Okamura Hitoshi, Yamaguchi Shun, Yagita Kazuhiro
Division of Molecular Brain Science, Department of Brain Sciences, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
Cell Tissue Res. 2002 Jul;309(1):47-56. doi: 10.1007/s00441-002-0572-5. Epub 2002 Jun 11.
The discovery of clock genes and the general principle of their oscillation has stimulated research on biological clocks and this research has had a major impact on the field of life sciences. The mammalian circadian core oscillator is thought to be composed of an autoregulatory transcription-(post)translation-based feedback loop involving a set of clock genes. The real time monitoring of clock gene oscillation at the levels of genes, cells, tissues, and systems will clarify the issue of how the time signal is born and how it is integrated into the organismic level. Investigations of circadian systems in various organisms employ multiple methods including ethology, physiology, neuroscience, molecular biology, cell biology and genetics. The circadian system has thus become a unique example in the elucidation of the general principles of how genes control cellular, systemic and behavioral functions.
时钟基因的发现及其振荡的一般原理激发了对生物钟的研究,这项研究对生命科学领域产生了重大影响。哺乳动物的昼夜节律核心振荡器被认为是由一个基于转录-(后)翻译的自调节反馈环组成,其中涉及一组时钟基因。在基因、细胞、组织和系统水平上对时钟基因振荡进行实时监测,将阐明时间信号如何产生以及如何整合到机体水平的问题。对各种生物体昼夜节律系统的研究采用了多种方法,包括行为学、生理学、神经科学、分子生物学、细胞生物学和遗传学。因此,昼夜节律系统已成为阐明基因如何控制细胞、系统和行为功能一般原理的一个独特范例。