Suppr超能文献

质子自旋-晶格弛豫时间的磁场依赖性

Magnetic field dependence of proton spin-lattice relaxation times.

作者信息

Korb Jean-Pierre, Bryant Robert G

机构信息

Laboratoire de Physique de la Matière Condensée, UMR 7643 du CNRS, Ecole Polytechnique, Palaiseau, France.

出版信息

Magn Reson Med. 2002 Jul;48(1):21-6. doi: 10.1002/mrm.10185.

Abstract

The magnetic field dependence of the water-proton spin-lattice relaxation rate (1/T(1)) in tissues results from magnetic coupling to the protons of the rotationally immobilized components of the tissue. As a consequence, the magnetic field dependence of the water-proton (1/T(1)) is a scaled report of the field dependence of the (1/T(1)) rate of the solid components of the tissue. The proton spin-lattice relaxation rate may be represented generally as a power law: 1/T(1)omega = A omega(-b), where b is usually found to be in the range of 0.5-0.8. We have shown that this power law may arise naturally from localized structural fluctuations along the backbone in biopolymers that modulate the proton dipole-dipole couplings. The protons in a protein form a spin communication network described by a fractal dimension that is less than the Euclidean dimension. The model proposed accounts quantitatively for the proton spin-lattice relaxation rates measured in immobilized protein systems at different water contents, and provides a fundamental basis for understanding the parametric dependence of proton spin-lattice relaxation rates in dynamically heterogeneous systems, such as tissues.

摘要

组织中水质子自旋晶格弛豫率(1/T(1))对磁场的依赖性源于与组织中旋转固定成分的质子的磁耦合。因此,水质子(1/T(1))对磁场的依赖性是组织固体成分(1/T(1))速率对磁场依赖性的比例报告。质子自旋晶格弛豫率通常可以表示为幂律:1/T(1)ω = Aω^(-b),其中b通常在0.5 - 0.8范围内。我们已经表明,这种幂律可能自然地源于生物聚合物主链上的局部结构波动,这些波动调节了质子偶极 - 偶极耦合。蛋白质中的质子形成一个由分形维数描述的自旋通信网络,该分形维数小于欧几里得维数。所提出的模型定量地解释了在不同含水量的固定化蛋白质系统中测量的质子自旋晶格弛豫率,并为理解动态异质系统(如组织)中质子自旋晶格弛豫率的参数依赖性提供了一个基本基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验