Suppr超能文献

用于磁共振成像的多激发3D切片选择定制射频脉冲。

Multishot 3D slice-select tailored RF pulses for MRI.

作者信息

Stenger V Andrew, Boada Fernando E, Noll Douglas C

机构信息

University of Pittsburgh Department of Radiology and Bioengineering, Pittsburgh, Pennsylvania 15213, USA.

出版信息

Magn Reson Med. 2002 Jul;48(1):157-65. doi: 10.1002/mrm.10194.

Abstract

A multishot 3D slice-select tailored RF pulse method is presented for the excitation of slice profiles with arbitrary resolution. This method is derived from the linearity of the small tip angle approximation, allowing for the decomposition of small tip angle tailored RF pulses into separate excitations. The final image is created by complex summation of the images acquired from the individual excitations. This technique overcomes the limitation of requiring a long pulse to excite thin slices with adequate resolution. This has implications in applications including T*(2)-weighted functional MRI in brain regions corrupted by intravoxel dephasing artifacts due to susceptibility variations. Simulations, phantom experiments, and human brain images are presented. It is demonstrated that at most four shots of 40 ms pulse length are needed to excite a 5 mm-thick slice in the brain with reduced susceptibility artifacts at 3T.

摘要

本文提出了一种多激发3D切片选择定制射频脉冲方法,用于激发具有任意分辨率的切片轮廓。该方法源于小翻转角近似的线性特性,可将小翻转角定制射频脉冲分解为单独的激发。最终图像通过对各个激发所采集图像进行复数求和来创建。该技术克服了需要长脉冲来以足够分辨率激发薄切片的限制。这在包括因磁化率变化导致体素内失相伪影而受损的脑区T*(2)加权功能磁共振成像等应用中具有重要意义。文中展示了模拟、体模实验和人脑图像。结果表明,在3T场强下,激发脑部5毫米厚的切片,最多需要4个时长为40毫秒的脉冲,且能减少磁化率伪影。

相似文献

1
Multishot 3D slice-select tailored RF pulses for MRI.
Magn Reson Med. 2002 Jul;48(1):157-65. doi: 10.1002/mrm.10194.
2
Variable-density spiral 3D tailored RF pulses.
Magn Reson Med. 2003 Nov;50(5):1100-6. doi: 10.1002/mrm.10623.
3
Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T(*)(2)-weighted functional MRI.
Magn Reson Med. 2000 Oct;44(4):525-31. doi: 10.1002/1522-2594(200010)44:4<525::aid-mrm5>3.0.co;2-l.
4
Strategies for improved 3D small-tip fast recovery imaging.
Magn Reson Med. 2014 Aug;72(2):389-98. doi: 10.1002/mrm.24947. Epub 2013 Oct 11.
7
Reduction of transmitter B1 inhomogeneity with transmit SENSE slice-select pulses.
Magn Reson Med. 2007 May;57(5):842-7. doi: 10.1002/mrm.21221.
10
Fast-kz three-dimensional tailored radiofrequency pulse for reduced B1 inhomogeneity.
Magn Reson Med. 2006 Apr;55(4):719-24. doi: 10.1002/mrm.20840.

引用本文的文献

2
Accelerated imaging with segmented 2D pulses using parallel imaging and virtual coils.
J Magn Reson. 2019 Aug;305:185-194. doi: 10.1016/j.jmr.2019.07.001. Epub 2019 Jul 4.
3
Two-dimensional frequency-swept pulse with resilience to both B and B inhomogeneity.
J Magn Reson. 2019 Feb;299:93-100. doi: 10.1016/j.jmr.2018.12.017. Epub 2018 Dec 19.
4
The typical development of posterior medial frontal cortex function and connectivity during task control demands in youth 8-19years old.
Neuroimage. 2016 Aug 15;137:97-106. doi: 10.1016/j.neuroimage.2016.05.019. Epub 2016 May 9.
6
Reduced error-related activation of dorsolateral prefrontal cortex across pediatric anxiety disorders.
J Am Acad Child Adolesc Psychiatry. 2013 Nov;52(11):1183-1191.e1. doi: 10.1016/j.jaac.2013.09.002. Epub 2013 Sep 17.
7
Test-retest reliability of amygdala response to emotional faces.
Psychophysiology. 2013 Nov;50(11):1147-56. doi: 10.1111/psyp.12129. Epub 2013 Oct 16.
8
Topographic analysis of the development of individual activation patterns during performance monitoring in medial frontal cortex.
Dev Cogn Neurosci. 2013 Oct;6:137-48. doi: 10.1016/j.dcn.2013.09.001. Epub 2013 Sep 13.
9
Image homogenization using pre-emphasis method for high field MRI.
Quant Imaging Med Surg. 2013 Aug;3(4):217-23. doi: 10.3978/j.issn.2223-4292.2013.07.01.
10
Developmental alterations of frontal-striatal-thalamic connectivity in obsessive-compulsive disorder.
J Am Acad Child Adolesc Psychiatry. 2011 Sep;50(9):938-948.e3. doi: 10.1016/j.jaac.2011.06.011. Epub 2011 Jul 31.

本文引用的文献

1
A k-space analysis of small-tip-angle excitation. 1989.
J Magn Reson. 2011 Dec;213(2):544-57. doi: 10.1016/j.jmr.2011.09.023.
2
High-speed spiral-scan echo planar NMR imaging-I.
IEEE Trans Med Imaging. 1986;5(1):2-7. doi: 10.1109/TMI.1986.4307732.
3
A homogeneity correction method for magnetic resonance imaging with time-varying gradients.
IEEE Trans Med Imaging. 1991;10(4):629-37. doi: 10.1109/42.108599.
4
Sensitivity and performance time in MRI dephasing artifact reduction methods.
Magn Reson Med. 2001 Mar;45(3):470-6. doi: 10.1002/1522-2594(200103)45:3<470::aid-mrm1062>3.0.co;2-e.
5
Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T(*)(2)-weighted functional MRI.
Magn Reson Med. 2000 Oct;44(4):525-31. doi: 10.1002/1522-2594(200010)44:4<525::aid-mrm5>3.0.co;2-l.
7
Removal of intravoxel dephasing artifact in gradient-echo images using a field-map based RF refocusing technique.
Magn Reson Med. 1999 Oct;42(4):807-12. doi: 10.1002/(sici)1522-2594(199910)42:4<807::aid-mrm25>3.0.co;2-8.
8
Simple analytic spiral K-space algorithm.
Magn Reson Med. 1999 Aug;42(2):412-5. doi: 10.1002/(sici)1522-2594(199908)42:2<412::aid-mrm25>3.0.co;2-u.
9
3D z-shim method for reduction of susceptibility effects in BOLD fMRI.
Magn Reson Med. 1999 Aug;42(2):290-9. doi: 10.1002/(sici)1522-2594(199908)42:2<290::aid-mrm11>3.0.co;2-n.
10
Selection of high-definition 2D virtual profiles with multiple RF pulse excitations along interleaved echo-planar k-space trajectories.
Magn Reson Med. 1999 Feb;41(2):224-9. doi: 10.1002/(sici)1522-2594(199902)41:2<224::aid-mrm2>3.0.co;2-g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验