Suppr超能文献

功能磁共振成像时间序列的空间独立成分分析:结果在多大程度上取决于所使用的算法?

Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?

作者信息

Esposito Fabrizio, Formisano Elia, Seifritz Erich, Goebel Rainer, Morrone Renato, Tedeschi Gioacchino, Di Salle Francesco

机构信息

Institute of Neurological Sciences, Second University of Naples, Italy.

出版信息

Hum Brain Mapp. 2002 Jul;16(3):146-57. doi: 10.1002/hbm.10034.

Abstract

Independent component analysis (ICA) has been successfully employed to decompose functional MRI (fMRI) time-series into sets of activation maps and associated time-courses. Several ICA algorithms have been proposed in the neural network literature. Applied to fMRI, these algorithms might lead to different spatial or temporal readouts of brain activation. We compared the two ICA algorithms that have been used so far for spatial ICA (sICA) of fMRI time-series: the Infomax (Bell and Sejnowski [1995]: Neural Comput 7:1004-1034) and the Fixed-Point (Hyvärinen [1999]: Adv Neural Inf Proc Syst 10:273-279) algorithms. We evaluated the Infomax- and Fixed Point-based sICA decompositions of simulated motor, and real motor and visual activation fMRI time-series using an ensemble of measures. Log-likelihood (McKeown et al. [1998]: Hum Brain Mapp 6:160-188) was used as a measure of how significantly the estimated independent sources fit the statistical structure of the data; receiver operating characteristics (ROC) and linear correlation analyses were used to evaluate the algorithms' accuracy of estimating the spatial layout and the temporal dynamics of simulated and real activations; cluster sizing calculations and an estimation of a residual gaussian noise term within the components were used to examine the anatomic structure of ICA components and for the assessment of noise reduction capabilities. Whereas both algorithms produced highly accurate results, the Fixed-Point outperformed the Infomax in terms of spatial and temporal accuracy as long as inferential statistics were employed as benchmarks. Conversely, the Infomax sICA was superior in terms of global estimation of the ICA model and noise reduction capabilities. Because of its adaptive nature, the Infomax approach appears to be better suited to investigate activation phenomena that are not predictable or adequately modelled by inferential techniques.

摘要

独立成分分析(ICA)已成功用于将功能磁共振成像(fMRI)时间序列分解为激活图和相关时间历程集。神经网络文献中已提出了几种ICA算法。应用于fMRI时,这些算法可能会导致大脑激活的不同空间或时间读数。我们比较了迄今为止用于fMRI时间序列空间ICA(sICA)的两种ICA算法:信息最大化算法(Bell和Sejnowski [1995]:《神经计算》7:1004 - 1034)和定点算法(Hyvärinen [1999]:《神经信息处理系统进展》10:273 - 279)。我们使用一系列测量方法评估了基于信息最大化和定点的sICA对模拟运动、真实运动和视觉激活fMRI时间序列的分解。对数似然(McKeown等人[1998]:《人类大脑图谱》6:160 - 188)被用作衡量估计的独立源与数据统计结构拟合程度的指标;接收器操作特征(ROC)和线性相关分析用于评估算法估计模拟和真实激活的空间布局和时间动态的准确性;聚类大小计算和对成分内残余高斯噪声项的估计用于检查ICA成分的解剖结构并评估降噪能力。虽然两种算法都产生了高度准确的结果,但只要采用推断统计作为基准,定点算法在空间和时间准确性方面优于信息最大化算法。相反,信息最大化sICA在ICA模型的全局估计和降噪能力方面更优。由于其自适应性质,信息最大化方法似乎更适合研究那些无法通过推断技术预测或充分建模的激活现象。

相似文献

2
Analysis of fMRI data by blind separation into independent spatial components.
Hum Brain Mapp. 1998;6(3):160-88. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1.
3
Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
J Neurosci Methods. 2016 Apr 1;263:103-14. doi: 10.1016/j.jneumeth.2016.02.010. Epub 2016 Feb 12.
4
A variant of logistic transfer function in Infomax and a postprocessing procedure for independent component analysis applied to fMRI data.
Magn Reson Imaging. 2007 Jun;25(5):703-11. doi: 10.1016/j.mri.2006.09.038. Epub 2007 Mar 26.
5
The non-separability of physiologic noise in functional connectivity MRI with spatial ICA at 3T.
J Neurosci Methods. 2010 Aug 30;191(2):263-76. doi: 10.1016/j.jneumeth.2010.06.024. Epub 2010 Jun 30.
7
How does spatial extent of fMRI datasets affect independent component analysis decomposition?
Hum Brain Mapp. 2006 Sep;27(9):736-46. doi: 10.1002/hbm.20215.
8
ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.
Neuroimage. 2015 May 15;112:267-277. doi: 10.1016/j.neuroimage.2015.02.064. Epub 2015 Mar 11.
9
Independent component analysis of instantaneous power-based fMRI.
Comput Math Methods Med. 2014;2014:579652. doi: 10.1155/2014/579652. Epub 2014 Mar 6.
10
A unified framework for group independent component analysis for multi-subject fMRI data.
Neuroimage. 2008 Sep 1;42(3):1078-93. doi: 10.1016/j.neuroimage.2008.05.008. Epub 2008 May 16.

引用本文的文献

1
Long-lasting effects of lavender exposure on brain resting-state networks in healthy women.
Front Neurosci. 2025 Jun 10;19:1555922. doi: 10.3389/fnins.2025.1555922. eCollection 2025.
2
Abnormal dynamic functional connectivity changes correlated with non-motor symptoms of Parkinson's disease.
Front Neurosci. 2023 Mar 16;17:1116111. doi: 10.3389/fnins.2023.1116111. eCollection 2023.
4
Comparing the reliability of different ICA algorithms for fMRI analysis.
PLoS One. 2022 Jun 27;17(6):e0270556. doi: 10.1371/journal.pone.0270556. eCollection 2022.
5
A novel approach for assessing hypoperfusion in stroke using spatial independent component analysis of resting-state fMRI.
Hum Brain Mapp. 2021 Nov;42(16):5204-5216. doi: 10.1002/hbm.25610. Epub 2021 Jul 29.
6
An Overview of ICA/BSS-Based Application to Alzheimer's Brain Signal Processing.
Biomedicines. 2021 Apr 6;9(4):386. doi: 10.3390/biomedicines9040386.
7
The Profiles of Non-stationarity and Non-linearity in the Time Series of Resting-State Brain Networks.
Front Neurosci. 2020 Jun 11;14:493. doi: 10.3389/fnins.2020.00493. eCollection 2020.
8
Clustering of fMRI data: the elusive optimal number of clusters.
PeerJ. 2018 Oct 3;6:e5416. doi: 10.7717/peerj.5416. eCollection 2018.
9
Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts.
Psychophysiology. 2017 Mar;54(3):386-398. doi: 10.1111/psyp.12804. Epub 2016 Dec 27.
10
Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.
Neuroimage. 2017 Feb 15;147:390-408. doi: 10.1016/j.neuroimage.2016.12.045. Epub 2016 Dec 16.

本文引用的文献

1
Modes or models: a critique on independent component analysis for fMRI.
Trends Cogn Sci. 1998 Oct 1;2(10):373-5. doi: 10.1016/s1364-6613(98)01227-3.
2
Fast and robust fixed-point algorithms for independent component analysis.
IEEE Trans Neural Netw. 1999;10(3):626-34. doi: 10.1109/72.761722.
4
Independent component analysis at the neural cocktail party.
Trends Neurosci. 2001 Jan;24(1):54-63. doi: 10.1016/s0166-2236(00)01683-0.
7
A multistep unsupervised fuzzy clustering analysis of fMRI time series.
Hum Brain Mapp. 2000 Aug;10(4):160-78. doi: 10.1002/1097-0193(200008)10:4<160::aid-hbm20>3.0.co;2-u.
8
Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis.
Magn Reson Imaging. 2000 Jan;18(1):89-94. doi: 10.1016/s0730-725x(99)00102-2.
9
An experimental comparison of neural algorithms for independent component analysis and blind separation.
Int J Neural Syst. 1999 Apr;9(2):99-114. doi: 10.1142/s0129065799000101.
10
Blind source separation of multiple signal sources of fMRI data sets using independent component analysis.
J Comput Assist Tomogr. 1999 Mar-Apr;23(2):265-71. doi: 10.1097/00004728-199903000-00016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验