Suppr超能文献

通过独立成分分析检查手指轻敲任务引起的全脑功能磁共振成像激活。

Whole-brain functional MR imaging activation from a finger-tapping task examined with independent component analysis.

作者信息

Moritz C H, Haughton V M, Cordes D, Quigley M, Meyerand M E

机构信息

Department of Radiology, University of Wisconsin, Madison, USA.

出版信息

AJNR Am J Neuroradiol. 2000 Oct;21(9):1629-35.

Abstract

BACKGROUND AND PURPOSE

Independent component analysis (ICA), unlike other methods for processing functional MR (fMR) imaging data, requires no a priori assumptions about the hemodynamic response to the task. The purpose of this study was to analyze the temporal characteristics and the spatial mapping of the independent components identified by ICA when the subject performs a finger-tapping task.

METHODS

Ten healthy subjects performed variations of the finger-tapping task conventionally used to map the sensorimotor cortex. The scan data were processed with ICA, and the temporal configuration of the components and their spatial localizations were studied. The locations with activation were tabulated and compared with locations known to be involved in the organization of motor functions in the brain.

RESULTS

Components were identified that correlated to varying degrees with the conventional boxcar reference function. One or more of these components mapped to the sensorimotor cortex, supplementary motor area (SMA), putamen, and thalamus. By means of ICA components, sensorimotor cortex, supplementary motor area, and superior cerebellar activation were identified bilaterally in 100% of the subjects; thalamus activation was contralateral to the active hand in 80%; and putamen activation was contralateral to the active hand in 60%.

CONCLUSION

ICA processing of multislice fMR imaging data acquired during finger tapping identifies the sensorimotor cortex, SMA, cerebellar, putamen, and thalamic activation. ICA appears to be a method that provides information on both the temporal and spatial characteristics of activation. Multiple task-related components can be identified by ICA, and specific activation maps can be derived from each separate component.

摘要

背景与目的

独立成分分析(ICA)与其他处理功能磁共振(fMR)成像数据的方法不同,它无需对任务的血流动力学反应进行先验假设。本研究的目的是分析当受试者执行手指轻敲任务时,由ICA识别出的独立成分的时间特征和空间映射。

方法

10名健康受试者执行了常用于绘制感觉运动皮层的手指轻敲任务的变体。扫描数据用ICA进行处理,并研究成分的时间配置及其空间定位。将激活的位置制成表格,并与已知参与大脑运动功能组织的位置进行比较。

结果

识别出与传统方波参考函数有不同程度相关性的成分。其中一个或多个成分映射到感觉运动皮层、辅助运动区(SMA)、壳核和丘脑。通过ICA成分,在100%的受试者中双侧识别出感觉运动皮层、辅助运动区和小脑上蚓部激活;80%的受试者丘脑激活与活动手对侧;60%的受试者壳核激活与活动手对侧。

结论

对手指轻敲期间采集的多层fMR成像数据进行ICA处理可识别感觉运动皮层、SMA、小脑、壳核和丘脑激活。ICA似乎是一种能提供激活的时间和空间特征信息的方法。ICA可识别多个与任务相关的成分,并可从每个单独成分得出特定的激活图谱。

相似文献

引用本文的文献

1
Independent Component Analysis with Functional Neuroscience Data Analysis.功能神经科学数据分析中的独立成分分析
J Biomed Phys Eng. 2023 Apr 1;13(2):169-180. doi: 10.31661/jbpe.v0i0.2111-1436. eCollection 2023 Apr.

本文引用的文献

3
Activation of non-primary motor areas during a complex finger movement task revealed by functional magnetic resonance imaging.
Psychiatry Clin Neurosci. 1998 Jun;52(3):339-43. doi: 10.1046/j.1440-1819.1998.00392.x.
4
Analysis of fMRI data by blind separation into independent spatial components.通过盲分离为独立空间成分对功能磁共振成像数据进行分析。
Hum Brain Mapp. 1998;6(3):160-88. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1.
6
Distributed neural systems underlying the timing of movements.运动计时背后的分布式神经系统。
J Neurosci. 1997 Jul 15;17(14):5528-35. doi: 10.1523/JNEUROSCI.17-14-05528.1997.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验