Suppr超能文献

高粱中氰醇苷的合成在转录水平上受到调控,并在较老植株中由氮肥诱导。

Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants.

作者信息

Busk Peter Kamp, Møller Birger Lindberg

机构信息

Plant Biochemistry Laboratory, Department of Plant Biology, and Center for Molecular Plant Physiology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.

出版信息

Plant Physiol. 2002 Jul;129(3):1222-31. doi: 10.1104/pp.000687.

Abstract

The content of the cyanogenic glucoside dhurrin in sorghum (Sorghum bicolor L. Moench) varies depending on plant age and growth conditions. The cyanide potential is highest shortly after onset of germination. At this stage, nitrogen application has no effect on dhurrin content, whereas in older plants, nitrogen application induces an increase. At all stages, the content of dhurrin correlates well with the activity of the two biosynthetic enzymes, CYP79A1 and CYP71E1, and with the protein and mRNA level for the two enzymes. During development, the activity of CYP79A1 is lower than the activity of CYP71E1, suggesting that CYP79A1 catalyzes the rate-limiting step in dhurrin synthesis as has previously been shown using etiolated seedlings. The site of dhurrin synthesis shifts from leaves to stem during plant development. In combination, the results demonstrate that dhurrin content in sorghum is largely determined by transcriptional regulation of the biosynthetic enzymes CYP79A1 and CYP71E1.

摘要

高粱(Sorghum bicolor L. Moench)中氰基糖苷蜀黍苷的含量因植株年龄和生长条件而异。发芽刚开始后,氰化物生成潜力最高。在此阶段,施氮对蜀黍苷含量没有影响,而在较老植株中,施氮会使其含量增加。在所有阶段,蜀黍苷的含量与两种生物合成酶CYP79A1和CYP71E1的活性以及这两种酶的蛋白质和mRNA水平密切相关。在发育过程中,CYP79A1的活性低于CYP71E1的活性,这表明CYP79A1催化了蜀黍苷合成中的限速步骤,正如之前使用黄化幼苗所表明的那样。在植株发育过程中,蜀黍苷的合成部位从叶片转移到茎。综合来看,结果表明高粱中蜀黍苷的含量很大程度上由生物合成酶CYP79A1和CYP71E1的转录调控决定。

相似文献

4
A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production.
Plant Biotechnol J. 2012 Jan;10(1):54-66. doi: 10.1111/j.1467-7652.2011.00646.x. Epub 2011 Aug 31.
7
Metabolon formation in dhurrin biosynthesis.
Phytochemistry. 2008 Jan;69(1):88-98. doi: 10.1016/j.phytochem.2007.06.033. Epub 2007 Aug 15.
9
Cyanogenesis in the Genus: From Genotype to Phenotype.
Genes (Basel). 2022 Jan 14;13(1):140. doi: 10.3390/genes13010140.
10
Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome.
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1779-84. doi: 10.1073/pnas.0409233102. Epub 2005 Jan 21.

引用本文的文献

1
Plant cyanogenic glycosides: from structure to properties and potential applications.
Front Plant Sci. 2025 Jul 31;16:1612132. doi: 10.3389/fpls.2025.1612132. eCollection 2025.
2
Abiotic stress responses in forage crops and grasses: the role of secondary metabolites and biotechnological interventions.
Front Plant Sci. 2025 Jun 3;16:1542519. doi: 10.3389/fpls.2025.1542519. eCollection 2025.
3
Dhurrin: a potential endogenous nitrogen turnover source for early seedling growth in sorghum.
Front Plant Sci. 2025 May 8;16:1558712. doi: 10.3389/fpls.2025.1558712. eCollection 2025.
4
Genome-Wide Identification and Transcriptome Analysis of P450 Superfamily Genes in Flax ( L.).
Int J Mol Sci. 2025 Apr 11;26(8):3637. doi: 10.3390/ijms26083637.
5
Saline irrigation improves survival of forage sorghum but limits growth and increases toxicity.
Plant Biol (Stuttg). 2025 Apr;27(3):401-409. doi: 10.1111/plb.70009. Epub 2025 Mar 12.
7
Dhurrin in Sorghum: Biosynthesis, Regulation, Biological Function and Challenges for Animal Production.
Plants (Basel). 2024 Aug 17;13(16):2291. doi: 10.3390/plants13162291.
8
The Putative GATA Transcription Factor GATA22 as a Novel Regulator of Dhurrin Biosynthesis.
Life (Basel). 2024 Apr 3;14(4):470. doi: 10.3390/life14040470.

本文引用的文献

1
Cyanogenic glucosides as defense compounds : A review of the evidence.
J Chem Ecol. 1988 Dec;14(12):2213-7. doi: 10.1007/BF01014026.
2
Biosynthesis of glucosinolates--gene discovery and beyond.
Trends Plant Sci. 2010 May;15(5):283-90. doi: 10.1016/j.tplants.2010.02.005. Epub 2010 Mar 19.
3
[The cyanogenic glycosides of triticum, secale and sorghum].
Planta Med. 1981 Jan;41(1):84-9. doi: 10.1055/s-2007-971681.
4
Turnover of dhurrin in green sorghum seedlings.
Plant Physiol. 1990 Nov;94(3):1219-24. doi: 10.1104/pp.94.3.1219.
6
Cyanogenesis inhibits active defense reactions in plants.
Plant Physiol. 1989 May;90(1):33-6. doi: 10.1104/pp.90.1.33.
7
Mobilization and utilization of cyanogenic glycosides: the linustatin pathway.
Plant Physiol. 1988 Mar;86(3):711-6. doi: 10.1104/pp.86.3.711.
8
Studies on Cyanogenic Glycoside of Sorghum Vulgare.
Plant Physiol. 1960 Jul;35(4):535-8. doi: 10.1104/pp.35.4.535.
9
The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds.
Plant Cell. 1995 Jul;7(7):907-919. doi: 10.1105/tpc.7.7.907.
10
Preformed Antimicrobial Compounds and Plant Defense against Fungal Attack.
Plant Cell. 1996 Oct;8(10):1821-1831. doi: 10.1105/tpc.8.10.1821.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验