Gnanasekaran Thiyagarajan, Karcher Daniel, Nielsen Agnieszka Zygadlo, Martens Helle Juel, Ruf Stephanie, Kroop Xenia, Olsen Carl Erik, Motawie Mohammed Saddik, Pribil Mathias, Møller Birger Lindberg, Bock Ralph, Jensen Poul Erik
Copenhagen Plant Science Centre, Center for Synthetic Biology bioSYNergy, Villum Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
J Exp Bot. 2016 Apr;67(8):2495-506. doi: 10.1093/jxb/erw067. Epub 2016 Mar 11.
Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1-0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons.
植物叶绿体是由光驱动的细胞工厂,在作为代谢工程应用的底盘方面具有巨大潜力。利用植物叶绿体,我们展示了光合还原力如何驱动一条代谢途径来合成一种生物活性天然产物。为此,我们将来自双色高粱的苦杏仁苷途径稳定地工程化到烟草的叶绿体中。苦杏仁苷是一种含氰糖苷,其从氨基酸酪氨酸合成由两种膜结合细胞色素P450酶(CYP79A1和CYP71E1)和一种可溶性葡糖基转移酶(UGT85B1)催化,并且依赖于从P450氧化还原酶的电子转移。通过将CYP79A1、CYP71E1和UGT85B1整合到烟草叶绿体基因组的一个中性位点,将整个途径引入叶绿体。当在叶绿体中表达时,这两种P450和UGT85B1具有功能,并利用直接来自光合电子传递链的电子将内源性酪氨酸转化为苦杏仁苷,而无需存在依赖NADPH的P450氧化还原酶。与高粱中的6%相比,工程化植物中产生的苦杏仁苷占叶片干重的0.1 - 0.2%。所获得的结果为参与合成经济上重要化合物的植物P450被工程化到叶绿体的类囊体膜中铺平了道路,并证明它们的完整催化循环可以由光合作用衍生的电子直接驱动。